Spaces:
Sleeping
Sleeping
works
Browse files- streamlit_app.py +50 -18
- utils.py +1 -1
streamlit_app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
from datetime import datetime, time, date
|
5 |
-
from typing import List, Dict, Any, Tuple
|
6 |
from utils import generate_random_data, evaluate_alarm_state, aggregate_data
|
7 |
from textwrap import dedent
|
|
|
8 |
|
9 |
# Constants
|
10 |
HARD_CODED_DATE = date(2024, 7, 26)
|
@@ -21,29 +20,42 @@ def main():
|
|
21 |
|
22 |
if not st.session_state.df.empty:
|
23 |
display_dataframe("Raw Event Data", st.session_state.df)
|
24 |
-
|
25 |
|
26 |
# Section 2 - Calculate Aggregations
|
27 |
st.header("Section 2 - Calculate Aggregations")
|
28 |
aggregation_form()
|
29 |
|
30 |
if not st.session_state.aggregated_df.empty:
|
31 |
-
display_dataframe("Aggregated Summary Data", st.session_state.aggregated_df)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Section 3 - Summary Data Aggregated by Period
|
35 |
st.header("Section 3 - Summary Data Aggregated by Period")
|
36 |
summary_by_period_form()
|
37 |
|
38 |
if not st.session_state.summary_by_period_df.empty:
|
39 |
-
display_dataframe("Summary Data Aggregated by Period", st.session_state.summary_by_period_df)
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Section 4 - Evaluate Alarm State
|
43 |
st.header("Section 4 - Evaluate Alarm State")
|
44 |
alarm_state_form()
|
45 |
|
46 |
if not st.session_state.alarm_state_df.empty:
|
|
|
47 |
display_alarm_state_evaluation(st.session_state.alarm_state_df)
|
48 |
|
49 |
display_key_tables()
|
@@ -79,12 +91,6 @@ def generate_data_form() -> None:
|
|
79 |
|
80 |
def aggregation_form() -> None:
|
81 |
freq_input = st.selectbox("Period (bin)", ['1min', '5min', '15min'], key='freq_input', help="Select the frequency for aggregating the data.")
|
82 |
-
aggregation_function_input = st.selectbox(
|
83 |
-
"Aggregation Function",
|
84 |
-
['p50', 'p95', 'p99', 'max', 'min', 'average'],
|
85 |
-
key='aggregation_function_input',
|
86 |
-
help="Select the aggregation function for visualizing the data."
|
87 |
-
)
|
88 |
if not st.session_state.df.empty:
|
89 |
st.session_state.aggregated_df = aggregate_data(st.session_state.df, freq_input)
|
90 |
|
@@ -109,7 +115,7 @@ def alarm_state_form() -> None:
|
|
109 |
threshold=threshold_input,
|
110 |
datapoints_to_alarm=datapoints_to_alarm_input,
|
111 |
evaluation_range=evaluation_range_input,
|
112 |
-
aggregation_function=st.session_state.
|
113 |
alarm_condition=alarm_condition_input
|
114 |
)
|
115 |
|
@@ -117,9 +123,9 @@ def display_dataframe(title: str, df: pd.DataFrame) -> None:
|
|
117 |
st.write(title)
|
118 |
st.dataframe(df)
|
119 |
|
120 |
-
def plot_time_series(df: pd.DataFrame,
|
121 |
timestamps = df['Timestamp']
|
122 |
-
response_times = df[
|
123 |
|
124 |
segments = []
|
125 |
current_segment = {'timestamps': [], 'values': []}
|
@@ -140,12 +146,38 @@ def plot_time_series(df: pd.DataFrame, column: str) -> None:
|
|
140 |
|
141 |
color = 'tab:blue'
|
142 |
ax1.set_xlabel('Timestamp')
|
143 |
-
ax1.set_ylabel(
|
144 |
|
145 |
for segment in segments:
|
146 |
ax1.plot(segment['timestamps'], segment['values'], color=color, linewidth=0.5)
|
147 |
ax1.scatter(segment['timestamps'], segment['values'], color=color, s=10)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
fig.tight_layout()
|
150 |
st.pyplot(fig)
|
151 |
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from datetime import time, date
|
|
|
|
|
4 |
from utils import generate_random_data, evaluate_alarm_state, aggregate_data
|
5 |
from textwrap import dedent
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
|
8 |
# Constants
|
9 |
HARD_CODED_DATE = date(2024, 7, 26)
|
|
|
20 |
|
21 |
if not st.session_state.df.empty:
|
22 |
display_dataframe("Raw Event Data", st.session_state.df)
|
23 |
+
st.scatter_chart(st.session_state.df.set_index("Timestamp"))
|
24 |
|
25 |
# Section 2 - Calculate Aggregations
|
26 |
st.header("Section 2 - Calculate Aggregations")
|
27 |
aggregation_form()
|
28 |
|
29 |
if not st.session_state.aggregated_df.empty:
|
30 |
+
display_dataframe("Aggregated Summary Data (Storage)", st.session_state.aggregated_df)
|
31 |
+
aggregation_function_input__storage = st.selectbox(
|
32 |
+
"Aggregation Function (Storage)",
|
33 |
+
['p50', 'p95', 'p99', 'max', 'min', 'average'],
|
34 |
+
key='aggregation_function_input__storage',
|
35 |
+
help="Select the aggregation function for visualizing the data."
|
36 |
+
)
|
37 |
+
st.line_chart(st.session_state.aggregated_df.set_index("Timestamp")[st.session_state.aggregation_function_input__storage])
|
38 |
|
39 |
# Section 3 - Summary Data Aggregated by Period
|
40 |
st.header("Section 3 - Summary Data Aggregated by Period")
|
41 |
summary_by_period_form()
|
42 |
|
43 |
if not st.session_state.summary_by_period_df.empty:
|
44 |
+
display_dataframe("Summary Data Aggregated by Period (for Alarm)", st.session_state.summary_by_period_df)
|
45 |
+
aggregation_function_input__alarm = st.selectbox(
|
46 |
+
"Aggregation Function (Alarm)",
|
47 |
+
['p50', 'p95', 'p99', 'max', 'min', 'average'],
|
48 |
+
key='aggregation_function_input__alarm',
|
49 |
+
help="Select the aggregation function for visualizing the data."
|
50 |
+
)
|
51 |
+
st.line_chart(st.session_state.summary_by_period_df.set_index("Timestamp")[st.session_state.aggregation_function_input__alarm])
|
52 |
|
53 |
# Section 4 - Evaluate Alarm State
|
54 |
st.header("Section 4 - Evaluate Alarm State")
|
55 |
alarm_state_form()
|
56 |
|
57 |
if not st.session_state.alarm_state_df.empty:
|
58 |
+
plot_time_series(st.session_state.summary_by_period_df, st.session_state.threshold_input, st.session_state.alarm_condition_input, st.session_state.evaluation_range_input)
|
59 |
display_alarm_state_evaluation(st.session_state.alarm_state_df)
|
60 |
|
61 |
display_key_tables()
|
|
|
91 |
|
92 |
def aggregation_form() -> None:
|
93 |
freq_input = st.selectbox("Period (bin)", ['1min', '5min', '15min'], key='freq_input', help="Select the frequency for aggregating the data.")
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if not st.session_state.df.empty:
|
95 |
st.session_state.aggregated_df = aggregate_data(st.session_state.df, freq_input)
|
96 |
|
|
|
115 |
threshold=threshold_input,
|
116 |
datapoints_to_alarm=datapoints_to_alarm_input,
|
117 |
evaluation_range=evaluation_range_input,
|
118 |
+
aggregation_function=st.session_state.aggregation_function_input__alarm,
|
119 |
alarm_condition=alarm_condition_input
|
120 |
)
|
121 |
|
|
|
123 |
st.write(title)
|
124 |
st.dataframe(df)
|
125 |
|
126 |
+
def plot_time_series(df: pd.DataFrame, threshold: int, alarm_condition: str, evaluation_range: int) -> None:
|
127 |
timestamps = df['Timestamp']
|
128 |
+
response_times = df[st.session_state.aggregation_function_input__alarm]
|
129 |
|
130 |
segments = []
|
131 |
current_segment = {'timestamps': [], 'values': []}
|
|
|
146 |
|
147 |
color = 'tab:blue'
|
148 |
ax1.set_xlabel('Timestamp')
|
149 |
+
ax1.set_ylabel('Response Time (ms)', color=color)
|
150 |
|
151 |
for segment in segments:
|
152 |
ax1.plot(segment['timestamps'], segment['values'], color=color, linewidth=0.5)
|
153 |
ax1.scatter(segment['timestamps'], segment['values'], color=color, s=10)
|
154 |
|
155 |
+
line_style = '--' if alarm_condition in ['<', '>'] else '-'
|
156 |
+
ax1.axhline(y=threshold, color='r', linestyle=line_style, linewidth=0.8, label='Threshold')
|
157 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
158 |
+
|
159 |
+
if alarm_condition in ['<=', '<']:
|
160 |
+
ax1.fill_between(timestamps, 0, threshold, color='pink', alpha=0.3)
|
161 |
+
else:
|
162 |
+
ax1.fill_between(timestamps, threshold, response_times.max(), color='pink', alpha=0.3)
|
163 |
+
|
164 |
+
period_indices = range(len(df))
|
165 |
+
ax2 = ax1.twiny()
|
166 |
+
ax2.set_xticks(period_indices)
|
167 |
+
ax2.set_xticklabels(period_indices, fontsize=8)
|
168 |
+
ax2.set_xlabel('Time Periods', fontsize=8)
|
169 |
+
ax2.xaxis.set_tick_params(width=0.5)
|
170 |
+
|
171 |
+
for idx in period_indices:
|
172 |
+
if idx % evaluation_range == 0:
|
173 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='green', linestyle='-', alpha=0.3)
|
174 |
+
max_value = max(filter(lambda x: x is not None, df[st.session_state.aggregation_function_input__alarm]))
|
175 |
+
ax1.text(df['Timestamp'].iloc[idx], max_value * 0.95, f"[{idx // evaluation_range}]", rotation=90, verticalalignment='bottom', color='grey', alpha=0.7, fontsize=8)
|
176 |
+
else:
|
177 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='grey', linestyle='--', alpha=0.3)
|
178 |
+
|
179 |
+
ax1.annotate('Alarm threshold', xy=(0.98, threshold), xycoords=('axes fraction', 'data'), ha='right', va='bottom', fontsize=8, color='red', backgroundcolor='none')
|
180 |
+
|
181 |
fig.tight_layout()
|
182 |
st.pyplot(fig)
|
183 |
|
utils.py
CHANGED
@@ -112,7 +112,7 @@ def evaluate_alarm_state(
|
|
112 |
num_dp_that_must_be_filled: int = 0
|
113 |
|
114 |
for dp in chunk:
|
115 |
-
if dp
|
116 |
dp_symbol = '⚫️'
|
117 |
elif check_condition(dp, threshold, alarm_condition):
|
118 |
dp_symbol = '🔴'
|
|
|
112 |
num_dp_that_must_be_filled: int = 0
|
113 |
|
114 |
for dp in chunk:
|
115 |
+
if str(dp).lower() == "nan":
|
116 |
dp_symbol = '⚫️'
|
117 |
elif check_condition(dp, threshold, alarm_condition):
|
118 |
dp_symbol = '🔴'
|