File size: 4,769 Bytes
9e6c24e
38b12ed
 
 
49a060f
 
 
38b12ed
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
38b12ed
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b12ed
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
9e6c24e
 
 
49a060f
9e6c24e
 
 
49a060f
 
9e6c24e
49a060f
9e6c24e
 
 
 
 
 
 
49a060f
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
9e6c24e
 
 
 
 
 
670a6ea
9e6c24e
 
 
 
 
 
 
 
 
670a6ea
49a060f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import math
import os.path
import shutil

import gradio as gr
import random

import requests

from configs.config import cfg
from ml.model import base_df, ml_model
from ml.predictor import Predictor


def get_result(team1, prob1, score1, team2, prob2, score2, probtie):
    if prob1 > prob2 and prob1 > probtie:
        winner = {"name": team1, "probability": prob1, "goals": score1}
        loser = {"name": team2, "probability": prob2, "goals": score2}

    elif prob1 < prob2 and prob2 > probtie:
        loser = {"name": team1, "probability": prob1, "goals": score1}
        winner = {"name": team2, "probability": prob2, "goals": score2}
    else:
        loser = {"name": None, "probability": 0.0, "goals": score1}
        winner = {"name": None, "probability": 0.0, "goals": score2}
    result = {
        "winner": winner,
        "loser": loser,
        "draw": {"probability": probtie},
    }
    return result


def function(team1, team2):
    """

    :param team1:
    :param team2:
    :return:
    """

    response = requests.get(cfg.live_prediction)
    if response.status_code == 200:
        five_thirty_eight_predict = response.json()
        for match in five_thirty_eight_predict["matches"]:
            if not (
                (team1 == match["team1"] and team2 == match["team2"])
                or (team1 == match["team2"] and team2 == match["team1"])
            ):
                continue

            if match["status"] != "live":
                result = get_result(
                    match["team1"],
                    match["prob1"],
                    math.ceil(match["adj_score1"])
                    if "adj_score1" in match
                    else math.ceil(match["o1"] - match["d2"]),
                    match["team2"],
                    match["prob2"],
                    math.ceil(match["adj_score2"])
                    if "adj_score2" in match
                    else math.ceil(match["o2"] - match["d1"]),
                    match["probtie"],
                )
            else:

                result = get_result(
                    match["team1"],
                    match["live_winprobs"]["winprobs"][-1]["prob1"],
                    math.ceil(match["adj_score1"])
                    if "adj_score1" in match
                    else math.ceil(match["o1"] - match["d2"]),
                    match["team2"],
                    match["live_winprobs"]["winprobs"][-1]["prob2"],
                    math.ceil(match["adj_score2"])
                    if "adj_score2" in match
                    else math.ceil(match["o2"] - match["d1"]),
                    match["probtie"],
                )
            return result
    draw, winner, winner_proba = predictor.predict(team1, team2)
    if draw:
        draw_prob = round(random.uniform(0.7, 0.9), 10)
        winner_proba = round(random.uniform(0, 1 - draw_prob), 10)
        loser_proba = 1 - draw_prob - winner_proba
        return {
            "winner": {"name": team1, "probability": winner_proba, "goals": None},
            "loser": {"name": team2, "probability": loser_proba, "goals": None},
            "draw": {"probability": draw_prob},
        }
    else:
        loser_proba = round(random.uniform(0, 1 - winner_proba), 10)
        return {
            "winner": {"name": winner, "probability": winner_proba, "goals": None},
            "loser": {
                "name": team1 if winner == team2 else team2,
                "probability": loser_proba,
                "goals": None,
            },
            "draw": {"probability": 1 - winner_proba - loser_proba},
        }


shutil.copytree(
    "static",
    os.path.abspath(
        os.path.join(os.path.dirname(gr.__file__), "templates/frontend/static")
    ),
    dirs_exist_ok=True,
)
shutil.copy(
    "templates/asset.html",
    os.path.abspath(
        os.path.join(
            os.path.dirname(gr.__file__), "templates/frontend/static/asset.html"
        )
    ),
)
shutil.copytree(
    "templates/asset",
    os.path.abspath(
        os.path.join(os.path.dirname(gr.__file__), "templates/frontend/static/asset")
    ),
    dirs_exist_ok=True,
)
predictor = Predictor(base_df, ml_model)
examples = (
    ("Croatia", "Argentina"),
    ("Morocco", "France"),
    ("Argentina", "France"),
    ("Morocco", "Croatia"),
)
examples = [list(x) for x in examples]
iface = gr.Interface(
    fn=function,
    inputs=[gr.Textbox(placeholder="Qatar"), gr.Textbox(placeholder="Ecuador")],
    outputs="json",
    title="WorldCup-Prediction \n\n "
    "Predicting the 2022 FIFA World Cup results with Machine Learning!",
    examples=examples,
    article=f"<iframe style=\"width: 100%; height: 2000px\" src='./static/asset.html' ></iframe>",
)
iface.queue(concurrency_count=5)
iface.launch()