File size: 12,095 Bytes
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
49a060f
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
9e6c24e
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
9e6c24e
49a060f
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
9e6c24e
 
 
49a060f
9e6c24e
 
49a060f
 
 
 
9e6c24e
 
49a060f
 
 
9e6c24e
 
 
 
 
49a060f
9e6c24e
 
 
49a060f
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
49a060f
9e6c24e
 
 
 
 
 
 
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
The data process is base on https://www.kaggle.com/code/sslp23/predicting-fifa-2022-world-cup-with-ml
"""
import os.path

import pandas as pd
from sklearn.model_selection import train_test_split

from configs.config import cfg
from configs.constants import DATA_ROOT


def result_finder(home, away):
    """
    Encode the data
    :param home:
    :param away:
    :return:
    """
    if home > away:
        return pd.Series([0, 3, 0])
    if home < away:
        return pd.Series([1, 0, 3])
    else:
        return pd.Series([2, 1, 1])


def create_dataset(df: pd.DataFrame):
    """
    Create train, test dataset
    :param df:
    :return:
    """
    x_, y = df.iloc[:, 3:], df[["target"]]
    x_train, x_test, y_train, y_test = train_test_split(
        x_, y, test_size=0.22, random_state=100
    )
    return x_train, x_test, y_train, y_test


def data_preparing():
    """
    Data preparing
    :return:
    """
    try:
        df = pd.read_csv(cfg.data.result_url)
    except Exception as e:
        print(e)
        df = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.result_file))
    df["date"] = pd.to_datetime(df["date"])
    df.dropna(inplace=True)
    df = df[(df["date"] >= cfg.day_get_result)].reset_index(drop=True)

    # RANK data prepare
    rank = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.rank_file))
    rank["rank_date"] = pd.to_datetime(rank["rank_date"])
    rank = rank[(rank["rank_date"] >= cfg.day_get_rank)].reset_index(drop=True)
    rank["country_full"] = (
        rank["country_full"]
        .str.replace("IR Iran", "Iran")
        .str.replace("Korea Republic", "South Korea")
        .str.replace("USA", "United States")
    )

    # The merge is made in order to get a dataset FIFA games and its rankings.
    rank = (
        rank.set_index(["rank_date"])
        .groupby(["country_full"], group_keys=False)
        .resample("D")
        .first()
        .fillna(method="ffill")
        .reset_index()
    )
    df_wc_ranked = df.merge(
        rank[
            [
                "country_full",
                "total_points",
                "previous_points",
                "rank",
                "rank_change",
                "rank_date",
            ]
        ],
        left_on=["date", "home_team"],
        right_on=["rank_date", "country_full"],
    ).drop(["rank_date", "country_full"], axis=1)

    df_wc_ranked = df_wc_ranked.merge(
        rank[
            [
                "country_full",
                "total_points",
                "previous_points",
                "rank",
                "rank_change",
                "rank_date",
            ]
        ],
        left_on=["date", "away_team"],
        right_on=["rank_date", "country_full"],
        suffixes=("_home", "_away"),
    ).drop(["rank_date", "country_full"], axis=1)

    # Featuring
    df = df_wc_ranked

    df[["result", "home_team_points", "away_team_points"]] = df.apply(
        lambda x: result_finder(x["home_score"], x["away_score"]), axis=1
    )

    # we create columns that will help in the creation of the features: ranking difference,
    # points won at the game vs. team faced rank, and goals difference in the game.
    # All features that are not differences should be created for the two teams (away and home).
    df["rank_dif"] = df["rank_home"] - df["rank_away"]
    df["sg"] = df["home_score"] - df["away_score"]
    df["points_home_by_rank"] = df["home_team_points"] / df["rank_away"]
    df["points_away_by_rank"] = df["away_team_points"] / df["rank_home"]

    # In order to create the features, I'll separate the dataset in home team's and away team's dataset,
    # unify them and calculate the past game values.
    # After that, I'll separate again and merge them, retrieving the original dataset.
    # This process optimizes the creation of the features.
    home_team = df[
        [
            "date",
            "home_team",
            "home_score",
            "away_score",
            "rank_home",
            "rank_away",
            "rank_change_home",
            "total_points_home",
            "result",
            "rank_dif",
            "points_home_by_rank",
            "home_team_points",
        ]
    ]

    away_team = df[
        [
            "date",
            "away_team",
            "away_score",
            "home_score",
            "rank_away",
            "rank_home",
            "rank_change_away",
            "total_points_away",
            "result",
            "rank_dif",
            "points_away_by_rank",
            "away_team_points",
        ]
    ]
    home_team.columns = [
        h.replace("home_", "")
        .replace("_home", "")
        .replace("away_", "suf_")
        .replace("_away", "_suf")
        for h in home_team.columns
    ]

    away_team.columns = [
        a.replace("away_", "")
        .replace("_away", "")
        .replace("home_", "suf_")
        .replace("_home", "_suf")
        for a in away_team.columns
    ]
    team_stats = home_team.append(away_team)

    stats_val = []

    for index, row in team_stats.iterrows():
        team = row["team"]
        date = row["date"]
        past_games = team_stats.loc[
            (team_stats["team"] == team) & (team_stats["date"] < date)
        ].sort_values(by=["date"], ascending=False)
        last5 = past_games.head(5)

        goals = past_games["score"].mean()
        goals_l5 = last5["score"].mean()

        goals_suf = past_games["suf_score"].mean()
        goals_suf_l5 = last5["suf_score"].mean()

        rank = past_games["rank_suf"].mean()
        rank_l5 = last5["rank_suf"].mean()

        if len(last5) > 0:
            points = (
                past_games["total_points"].values[0]
                - past_games["total_points"].values[-1]
            )  # amount of points earned
            points_l5 = (
                last5["total_points"].values[0] - last5["total_points"].values[-1]
            )
        else:
            points = 0
            points_l5 = 0

        gp = past_games["team_points"].mean()
        gp_l5 = last5["team_points"].mean()

        gp_rank = past_games["points_by_rank"].mean()
        gp_rank_l5 = last5["points_by_rank"].mean()

        stats_val.append(
            [
                goals,
                goals_l5,
                goals_suf,
                goals_suf_l5,
                rank,
                rank_l5,
                points,
                points_l5,
                gp,
                gp_l5,
                gp_rank,
                gp_rank_l5,
            ]
        )

    stats_cols = [
        "goals_mean",
        "goals_mean_l5",
        "goals_suf_mean",
        "goals_suf_mean_l5",
        "rank_mean",
        "rank_mean_l5",
        "points_mean",
        "points_mean_l5",
        "game_points_mean",
        "game_points_mean_l5",
        "game_points_rank_mean",
        "game_points_rank_mean_l5",
    ]

    stats_df = pd.DataFrame(stats_val, columns=stats_cols)

    full_df = pd.concat(
        [team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False
    )

    home_team_stats = full_df.iloc[: int(full_df.shape[0] / 2), :]
    away_team_stats = full_df.iloc[int(full_df.shape[0] / 2) :, :]

    home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
    away_team_stats = away_team_stats[away_team_stats.columns[-12:]]

    home_team_stats.columns = ["home_" + str(col) for col in home_team_stats.columns]
    away_team_stats.columns = ["away_" + str(col) for col in away_team_stats.columns]

    # In order to unify the database, is needed to add home and away suffix for each column.
    # After that, the data is ready to be merged.
    match_stats = pd.concat(
        [home_team_stats, away_team_stats.reset_index(drop=True)],
        axis=1,
        ignore_index=False,
    )

    full_df = pd.concat(
        [df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False
    )

    # Drop friendly game
    full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x))
    full_df = pd.get_dummies(full_df, columns=["is_friendly"])

    base_df = full_df[
        [
            "date",
            "home_team",
            "away_team",
            "rank_home",
            "rank_away",
            "home_score",
            "away_score",
            "result",
            "rank_dif",
            "rank_change_home",
            "rank_change_away",
            "home_goals_mean",
            "home_goals_mean_l5",
            "home_goals_suf_mean",
            "home_goals_suf_mean_l5",
            "home_rank_mean",
            "home_rank_mean_l5",
            "home_points_mean",
            "home_points_mean_l5",
            "away_goals_mean",
            "away_goals_mean_l5",
            "away_goals_suf_mean",
            "away_goals_suf_mean_l5",
            "away_rank_mean",
            "away_rank_mean_l5",
            "away_points_mean",
            "away_points_mean_l5",
            "home_game_points_mean",
            "home_game_points_mean_l5",
            "home_game_points_rank_mean",
            "home_game_points_rank_mean_l5",
            "away_game_points_mean",
            "away_game_points_mean_l5",
            "away_game_points_rank_mean",
            "away_game_points_rank_mean_l5",
            "is_friendly_0",
            "is_friendly_1",
        ]
    ]

    df = base_df.dropna()

    df["target"] = df["result"].apply(lambda x: no_draw(x))

    model_db = create_db(df)

    return df, model_db


def find_friendly(x):
    """
    Return whether the match is friendly match or not.
    :param x:
    :return:
    """
    if x == "Friendly":
        return 1
    else:
        return 0


def create_db(df):
    """

    :param df:
    :return:
    """
    columns = [
        "home_team",
        "away_team",
        "target",
        "rank_dif",
        "home_goals_mean",
        "home_rank_mean",
        "away_goals_mean",
        "away_rank_mean",
        "home_rank_mean_l5",
        "away_rank_mean_l5",
        "home_goals_suf_mean",
        "away_goals_suf_mean",
        "home_goals_mean_l5",
        "away_goals_mean_l5",
        "home_goals_suf_mean_l5",
        "away_goals_suf_mean_l5",
        "home_game_points_rank_mean",
        "home_game_points_rank_mean_l5",
        "away_game_points_rank_mean",
        "away_game_points_rank_mean_l5",
        "is_friendly_0",
        "is_friendly_1",
    ]

    base = df.loc[:, columns]
    base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
    base.loc[:, "goals_dif_l5"] = (
        base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
    )
    base.loc[:, "goals_suf_dif"] = (
        base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
    )
    base.loc[:, "goals_suf_dif_l5"] = (
        base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
    )
    base.loc[:, "goals_per_ranking_dif"] = (
        base["home_goals_mean"] / base["home_rank_mean"]
    ) - (base["away_goals_mean"] / base["away_rank_mean"])
    base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
    base.loc[:, "dif_rank_agst_l5"] = (
        base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
    )
    base.loc[:, "dif_points_rank"] = (
        base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
    )
    base.loc[:, "dif_points_rank_l5"] = (
        base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
    )

    model_df = base[
        [
            "home_team",
            "away_team",
            "target",
            "rank_dif",
            "goals_dif",
            "goals_dif_l5",
            "goals_suf_dif",
            "goals_suf_dif_l5",
            "goals_per_ranking_dif",
            "dif_rank_agst",
            "dif_rank_agst_l5",
            "dif_points_rank",
            "dif_points_rank_l5",
            "is_friendly_0",
            "is_friendly_1",
        ]
    ]
    return model_df


def no_draw(x):
    """

    :param x:
    :return:
    """
    if x == 2:
        return 1
    else:
        return x