Spaces:
Build error
Build error
File size: 12,095 Bytes
49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
The data process is base on https://www.kaggle.com/code/sslp23/predicting-fifa-2022-world-cup-with-ml
"""
import os.path
import pandas as pd
from sklearn.model_selection import train_test_split
from configs.config import cfg
from configs.constants import DATA_ROOT
def result_finder(home, away):
"""
Encode the data
:param home:
:param away:
:return:
"""
if home > away:
return pd.Series([0, 3, 0])
if home < away:
return pd.Series([1, 0, 3])
else:
return pd.Series([2, 1, 1])
def create_dataset(df: pd.DataFrame):
"""
Create train, test dataset
:param df:
:return:
"""
x_, y = df.iloc[:, 3:], df[["target"]]
x_train, x_test, y_train, y_test = train_test_split(
x_, y, test_size=0.22, random_state=100
)
return x_train, x_test, y_train, y_test
def data_preparing():
"""
Data preparing
:return:
"""
try:
df = pd.read_csv(cfg.data.result_url)
except Exception as e:
print(e)
df = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.result_file))
df["date"] = pd.to_datetime(df["date"])
df.dropna(inplace=True)
df = df[(df["date"] >= cfg.day_get_result)].reset_index(drop=True)
# RANK data prepare
rank = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.rank_file))
rank["rank_date"] = pd.to_datetime(rank["rank_date"])
rank = rank[(rank["rank_date"] >= cfg.day_get_rank)].reset_index(drop=True)
rank["country_full"] = (
rank["country_full"]
.str.replace("IR Iran", "Iran")
.str.replace("Korea Republic", "South Korea")
.str.replace("USA", "United States")
)
# The merge is made in order to get a dataset FIFA games and its rankings.
rank = (
rank.set_index(["rank_date"])
.groupby(["country_full"], group_keys=False)
.resample("D")
.first()
.fillna(method="ffill")
.reset_index()
)
df_wc_ranked = df.merge(
rank[
[
"country_full",
"total_points",
"previous_points",
"rank",
"rank_change",
"rank_date",
]
],
left_on=["date", "home_team"],
right_on=["rank_date", "country_full"],
).drop(["rank_date", "country_full"], axis=1)
df_wc_ranked = df_wc_ranked.merge(
rank[
[
"country_full",
"total_points",
"previous_points",
"rank",
"rank_change",
"rank_date",
]
],
left_on=["date", "away_team"],
right_on=["rank_date", "country_full"],
suffixes=("_home", "_away"),
).drop(["rank_date", "country_full"], axis=1)
# Featuring
df = df_wc_ranked
df[["result", "home_team_points", "away_team_points"]] = df.apply(
lambda x: result_finder(x["home_score"], x["away_score"]), axis=1
)
# we create columns that will help in the creation of the features: ranking difference,
# points won at the game vs. team faced rank, and goals difference in the game.
# All features that are not differences should be created for the two teams (away and home).
df["rank_dif"] = df["rank_home"] - df["rank_away"]
df["sg"] = df["home_score"] - df["away_score"]
df["points_home_by_rank"] = df["home_team_points"] / df["rank_away"]
df["points_away_by_rank"] = df["away_team_points"] / df["rank_home"]
# In order to create the features, I'll separate the dataset in home team's and away team's dataset,
# unify them and calculate the past game values.
# After that, I'll separate again and merge them, retrieving the original dataset.
# This process optimizes the creation of the features.
home_team = df[
[
"date",
"home_team",
"home_score",
"away_score",
"rank_home",
"rank_away",
"rank_change_home",
"total_points_home",
"result",
"rank_dif",
"points_home_by_rank",
"home_team_points",
]
]
away_team = df[
[
"date",
"away_team",
"away_score",
"home_score",
"rank_away",
"rank_home",
"rank_change_away",
"total_points_away",
"result",
"rank_dif",
"points_away_by_rank",
"away_team_points",
]
]
home_team.columns = [
h.replace("home_", "")
.replace("_home", "")
.replace("away_", "suf_")
.replace("_away", "_suf")
for h in home_team.columns
]
away_team.columns = [
a.replace("away_", "")
.replace("_away", "")
.replace("home_", "suf_")
.replace("_home", "_suf")
for a in away_team.columns
]
team_stats = home_team.append(away_team)
stats_val = []
for index, row in team_stats.iterrows():
team = row["team"]
date = row["date"]
past_games = team_stats.loc[
(team_stats["team"] == team) & (team_stats["date"] < date)
].sort_values(by=["date"], ascending=False)
last5 = past_games.head(5)
goals = past_games["score"].mean()
goals_l5 = last5["score"].mean()
goals_suf = past_games["suf_score"].mean()
goals_suf_l5 = last5["suf_score"].mean()
rank = past_games["rank_suf"].mean()
rank_l5 = last5["rank_suf"].mean()
if len(last5) > 0:
points = (
past_games["total_points"].values[0]
- past_games["total_points"].values[-1]
) # amount of points earned
points_l5 = (
last5["total_points"].values[0] - last5["total_points"].values[-1]
)
else:
points = 0
points_l5 = 0
gp = past_games["team_points"].mean()
gp_l5 = last5["team_points"].mean()
gp_rank = past_games["points_by_rank"].mean()
gp_rank_l5 = last5["points_by_rank"].mean()
stats_val.append(
[
goals,
goals_l5,
goals_suf,
goals_suf_l5,
rank,
rank_l5,
points,
points_l5,
gp,
gp_l5,
gp_rank,
gp_rank_l5,
]
)
stats_cols = [
"goals_mean",
"goals_mean_l5",
"goals_suf_mean",
"goals_suf_mean_l5",
"rank_mean",
"rank_mean_l5",
"points_mean",
"points_mean_l5",
"game_points_mean",
"game_points_mean_l5",
"game_points_rank_mean",
"game_points_rank_mean_l5",
]
stats_df = pd.DataFrame(stats_val, columns=stats_cols)
full_df = pd.concat(
[team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False
)
home_team_stats = full_df.iloc[: int(full_df.shape[0] / 2), :]
away_team_stats = full_df.iloc[int(full_df.shape[0] / 2) :, :]
home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
away_team_stats = away_team_stats[away_team_stats.columns[-12:]]
home_team_stats.columns = ["home_" + str(col) for col in home_team_stats.columns]
away_team_stats.columns = ["away_" + str(col) for col in away_team_stats.columns]
# In order to unify the database, is needed to add home and away suffix for each column.
# After that, the data is ready to be merged.
match_stats = pd.concat(
[home_team_stats, away_team_stats.reset_index(drop=True)],
axis=1,
ignore_index=False,
)
full_df = pd.concat(
[df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False
)
# Drop friendly game
full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x))
full_df = pd.get_dummies(full_df, columns=["is_friendly"])
base_df = full_df[
[
"date",
"home_team",
"away_team",
"rank_home",
"rank_away",
"home_score",
"away_score",
"result",
"rank_dif",
"rank_change_home",
"rank_change_away",
"home_goals_mean",
"home_goals_mean_l5",
"home_goals_suf_mean",
"home_goals_suf_mean_l5",
"home_rank_mean",
"home_rank_mean_l5",
"home_points_mean",
"home_points_mean_l5",
"away_goals_mean",
"away_goals_mean_l5",
"away_goals_suf_mean",
"away_goals_suf_mean_l5",
"away_rank_mean",
"away_rank_mean_l5",
"away_points_mean",
"away_points_mean_l5",
"home_game_points_mean",
"home_game_points_mean_l5",
"home_game_points_rank_mean",
"home_game_points_rank_mean_l5",
"away_game_points_mean",
"away_game_points_mean_l5",
"away_game_points_rank_mean",
"away_game_points_rank_mean_l5",
"is_friendly_0",
"is_friendly_1",
]
]
df = base_df.dropna()
df["target"] = df["result"].apply(lambda x: no_draw(x))
model_db = create_db(df)
return df, model_db
def find_friendly(x):
"""
Return whether the match is friendly match or not.
:param x:
:return:
"""
if x == "Friendly":
return 1
else:
return 0
def create_db(df):
"""
:param df:
:return:
"""
columns = [
"home_team",
"away_team",
"target",
"rank_dif",
"home_goals_mean",
"home_rank_mean",
"away_goals_mean",
"away_rank_mean",
"home_rank_mean_l5",
"away_rank_mean_l5",
"home_goals_suf_mean",
"away_goals_suf_mean",
"home_goals_mean_l5",
"away_goals_mean_l5",
"home_goals_suf_mean_l5",
"away_goals_suf_mean_l5",
"home_game_points_rank_mean",
"home_game_points_rank_mean_l5",
"away_game_points_rank_mean",
"away_game_points_rank_mean_l5",
"is_friendly_0",
"is_friendly_1",
]
base = df.loc[:, columns]
base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
base.loc[:, "goals_dif_l5"] = (
base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
)
base.loc[:, "goals_suf_dif"] = (
base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
)
base.loc[:, "goals_suf_dif_l5"] = (
base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
)
base.loc[:, "goals_per_ranking_dif"] = (
base["home_goals_mean"] / base["home_rank_mean"]
) - (base["away_goals_mean"] / base["away_rank_mean"])
base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
base.loc[:, "dif_rank_agst_l5"] = (
base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
)
base.loc[:, "dif_points_rank"] = (
base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
)
base.loc[:, "dif_points_rank_l5"] = (
base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
)
model_df = base[
[
"home_team",
"away_team",
"target",
"rank_dif",
"goals_dif",
"goals_dif_l5",
"goals_suf_dif",
"goals_suf_dif_l5",
"goals_per_ranking_dif",
"dif_rank_agst",
"dif_rank_agst_l5",
"dif_points_rank",
"dif_points_rank_l5",
"is_friendly_0",
"is_friendly_1",
]
]
return model_df
def no_draw(x):
"""
:param x:
:return:
"""
if x == 2:
return 1
else:
return x
|