Spaces:
Build error
Build error
File size: 9,835 Bytes
49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f 9e6c24e 49a060f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import time
from typing import Text
import lightgbm as lgb
import matplotlib.pyplot as plt
import numpy as np
import xgboost as xgb
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
accuracy_score,
roc_auc_score,
cohen_kappa_score,
plot_confusion_matrix,
roc_curve,
classification_report,
)
from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from configs.constants import SUPPORT_MODEL, DEFAULT_MODEL
from ml.data_prepare import data_preparing, create_dataset
def plot_roc_cur(fper, tper):
"""
PLot the ROC
:param fper:
:param tper:
"""
plt.plot(fper, tper, color="orange", label="ROC")
plt.plot([0, 1], [0, 1], color="darkblue", linestyle="--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) Curve")
plt.legend()
plt.show()
class MLModel:
"""
WC predictor model
"""
def __init__(self, model_type: Text):
assert (
model_type in SUPPORT_MODEL
), "Not support the kind of model. Please choose one of {}".format(
SUPPORT_MODEL
)
self.model_type = model_type
if self.model_type == "LogisticRegression":
self.model = self.get_logistic_regression_model()
elif self.model_type == "DecisionTreeClassifier":
self.model = self.get_decision_tree_model()
elif self.model_type == "MLPClassifier":
self.model = self.get_neural_network_model()
elif self.model_type == "RandomForestClassifier":
self.model = self.get_random_forest_model()
elif self.model_type == "GradientBoostingClassifier":
self.model = self.get_gradient_boosting_model()
elif self.model_type == "LGBMClassifier":
self.model = self.get_light_gbm_model()
elif self.model_type == "XGBClassifier":
self.model = self.get_xgboost_model()
def predict_proba(self, x):
"""
Call predict_proba on the estimator with the best found parameters.
:return:
"""
return self.model.predict_proba(x)
@staticmethod
def __run_model(model, x_train, y_train, x_test, y_test, verbose=True):
t0 = time.time()
if verbose is False:
model.fit(x_train.values, np.ravel(y_train), verbose=0)
else:
model.fit(x_train.values, np.ravel(y_train))
model = model.best_estimator_
y_pred = model.predict(x_test)
accuracy = accuracy_score(y_test.values, y_pred)
roc_auc = roc_auc_score(y_test, model.predict_proba(x_test.values)[:, 1])
coh_kap = cohen_kappa_score(y_test, y_pred)
time_taken = time.time() - t0
print("Accuracy : {}".format(accuracy))
print("ROC Area under Curve : {}".format(roc_auc))
print("Cohen's Kappa : {}".format(coh_kap))
print("Time taken : {}".format(time_taken))
print(classification_report(y_test, y_pred, digits=5))
return model, accuracy, roc_auc, coh_kap, time_taken
@staticmethod
def get_logistic_regression_model(**params_lr):
"""
Return a logistic regression model
:return:
"""
if not all(params_lr.values()):
params_lr = {
"C": np.logspace(-3, 3, 7),
"penalty": ["l1", "l2"],
"solver": "liblinear",
}
model_lr = LogisticRegression()
model_lr = GridSearchCV(
model_lr, params_lr, cv=3, verbose=False, scoring="roc_auc", refit=True
)
return model_lr
@staticmethod
def get_decision_tree_model(**params):
"""
Return a decision tree model
:return:
"""
if not all(params.values()):
params = {
"max_features": ["auto", "sqrt", "log2"],
"ccp_alpha": [0.1, 0.01, 0.001],
"max_depth": [5, 6, 7, 8, 9],
"criterion": ["gini", "entropy"],
}
model = DecisionTreeClassifier()
model = GridSearchCV(
estimator=model,
param_grid=params,
cv=3,
verbose=False,
scoring="roc_auc",
refit=True,
)
return model
@staticmethod
def get_neural_network_model(**params_nn):
"""
Return a neutral network model
:return:
"""
if not all(params_nn.values()):
params_nn = {
"solver": ["lbfgs"],
"max_iter": [
1000,
1100,
1200,
1300,
1400,
1500,
1600,
1700,
1800,
1900,
2000,
],
"alpha": 10.0 ** -np.arange(1, 10),
"hidden_layer_sizes": np.arange(10, 15),
"random_state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
}
model_nn = MLPClassifier()
model_nn = GridSearchCV(
model_nn, params_nn, n_jobs=-1, scoring="roc_auc", refit=True, verbose=False
)
return model_nn
@staticmethod
def get_random_forest_model(**params_rf):
"""
Return a random forest model
:return:
"""
if not all(params_rf.values()):
params_rf = {
"max_depth": [20],
"min_samples_split": [10],
"max_leaf_nodes": [175],
"min_samples_leaf": [5],
"n_estimators": [250],
"max_features": ["sqrt"],
}
model_rf = RandomForestClassifier()
model_rf = GridSearchCV(
model_rf,
params_rf,
cv=3,
n_jobs=-1,
verbose=False,
scoring="roc_auc",
refit=True,
)
return model_rf
@staticmethod
def get_light_gbm_model(**params_lgb):
"""
Return a LightGBM model
:return:
"""
if not all(params_lgb.values()):
params_lgb = {
"learning_rate": [0.005, 0.01],
"n_estimators": [8, 16, 24],
"num_leaves": [
6,
8,
12,
16,
], # large num_leaves helps improve accuracy but might lead to over-fitting
"boosting_type": ["gbdt", "dart"], # for better accuracy -> try dart
"objective": ["binary"],
"max_bin": [
255,
510,
], # large max_bin helps improve accuracy but might slow down training progress
"random_state": [500],
"colsample_bytree": [0.64, 0.65, 0.66],
"subsample": [0.7, 0.75],
"reg_alpha": [1, 1.2],
"reg_lambda": [1, 1.2, 1.4],
}
model = lgb.LGBMClassifier()
model = GridSearchCV(
model,
params_lgb,
verbose=False,
cv=3,
n_jobs=-1,
scoring="roc_auc",
refit=True,
)
return model
@staticmethod
def get_xgboost_model(**params_xgb):
"""
Return a xgboost model
:return:
"""
if not all(params_xgb.values()):
params_xgb = {
"nthread": [4], # when use hyper thread, xgboost may become slower
"objective": ["binary:logistic"],
"learning_rate": [0.05], # so called `eta` value
"max_depth": [6],
"min_child_weight": [11],
"silent": [1],
"subsample": [0.8],
"colsample_bytree": [0.7],
"n_estimators": [
100
], # number of trees, change it to 1000 for better results
"missing": [-999],
"seed": [1337],
}
model = GridSearchCV(
xgb.XGBClassifier(),
params_xgb,
n_jobs=-1,
cv=3,
scoring="roc_auc",
refit=True,
)
return model
def fit_and_eval_model(self, x_train, x_test, y_train, y_test):
"""
Run the model with dataset
:param x_train:
:param x_test:
:param y_train:
:param y_test:
:return:
"""
model_lr, accuracy_lr, roc_auc_lr, coh_kap_lr, tt_lr = self.__run_model(
self.model, x_train, y_train, x_test, y_test
)
return model_lr, accuracy_lr, roc_auc_lr, coh_kap_lr, tt_lr
@staticmethod
def get_gradient_boosting_model(**params):
"""
Return gradient boosting model
:param params:
:return:
"""
if not all(params.values()):
params = {
"learning_rate": [0.01, 0.02, 0.03],
"min_samples_split": [5, 10],
"min_samples_leaf": [3, 5],
"max_depth": [3, 5, 10],
"max_features": ["sqrt"],
"n_estimators": [100, 200],
}
model = GradientBoostingClassifier(random_state=100)
return GridSearchCV(model, params, cv=3, n_jobs=-1)
base_df, data_df = data_preparing()
x_train, x_test, y_train, y_test = create_dataset(data_df)
ml_model = MLModel(DEFAULT_MODEL)
ml_model.fit_and_eval_model(x_train, x_test, y_train, y_test)
|