File size: 9,835 Bytes
49a060f
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
49a060f
 
 
9e6c24e
 
 
49a060f
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
9e6c24e
 
 
49a060f
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
49a060f
 
9e6c24e
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
 
 
9e6c24e
 
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
 
 
 
 
 
49a060f
9e6c24e
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
49a060f
 
 
 
 
 
 
 
 
 
9e6c24e
 
 
 
 
 
 
 
49a060f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import time
from typing import Text

import lightgbm as lgb
import matplotlib.pyplot as plt
import numpy as np
import xgboost as xgb
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
    accuracy_score,
    roc_auc_score,
    cohen_kappa_score,
    plot_confusion_matrix,
    roc_curve,
    classification_report,
)
from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier

from configs.constants import SUPPORT_MODEL, DEFAULT_MODEL
from ml.data_prepare import data_preparing, create_dataset


def plot_roc_cur(fper, tper):
    """
    PLot the ROC
    :param fper:
    :param tper:
    """
    plt.plot(fper, tper, color="orange", label="ROC")
    plt.plot([0, 1], [0, 1], color="darkblue", linestyle="--")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("Receiver Operating Characteristic (ROC) Curve")
    plt.legend()
    plt.show()


class MLModel:
    """
    WC predictor model
    """

    def __init__(self, model_type: Text):

        assert (
            model_type in SUPPORT_MODEL
        ), "Not support the kind of model. Please choose one of {}".format(
            SUPPORT_MODEL
        )
        self.model_type = model_type
        if self.model_type == "LogisticRegression":
            self.model = self.get_logistic_regression_model()
        elif self.model_type == "DecisionTreeClassifier":
            self.model = self.get_decision_tree_model()
        elif self.model_type == "MLPClassifier":
            self.model = self.get_neural_network_model()
        elif self.model_type == "RandomForestClassifier":
            self.model = self.get_random_forest_model()
        elif self.model_type == "GradientBoostingClassifier":
            self.model = self.get_gradient_boosting_model()
        elif self.model_type == "LGBMClassifier":
            self.model = self.get_light_gbm_model()
        elif self.model_type == "XGBClassifier":
            self.model = self.get_xgboost_model()

    def predict_proba(self, x):
        """
        Call predict_proba on the estimator with the best found parameters.
        :return:
        """
        return self.model.predict_proba(x)

    @staticmethod
    def __run_model(model, x_train, y_train, x_test, y_test, verbose=True):
        t0 = time.time()
        if verbose is False:
            model.fit(x_train.values, np.ravel(y_train), verbose=0)
        else:
            model.fit(x_train.values, np.ravel(y_train))
        model = model.best_estimator_
        y_pred = model.predict(x_test)
        accuracy = accuracy_score(y_test.values, y_pred)
        roc_auc = roc_auc_score(y_test, model.predict_proba(x_test.values)[:, 1])
        coh_kap = cohen_kappa_score(y_test, y_pred)
        time_taken = time.time() - t0
        print("Accuracy : {}".format(accuracy))
        print("ROC Area under Curve : {}".format(roc_auc))
        print("Cohen's Kappa : {}".format(coh_kap))
        print("Time taken : {}".format(time_taken))
        print(classification_report(y_test, y_pred, digits=5))

        return model, accuracy, roc_auc, coh_kap, time_taken

    @staticmethod
    def get_logistic_regression_model(**params_lr):
        """
        Return a logistic regression model
        :return:
        """
        if not all(params_lr.values()):
            params_lr = {
                "C": np.logspace(-3, 3, 7),
                "penalty": ["l1", "l2"],
                "solver": "liblinear",
            }

        model_lr = LogisticRegression()
        model_lr = GridSearchCV(
            model_lr, params_lr, cv=3, verbose=False, scoring="roc_auc", refit=True
        )
        return model_lr

    @staticmethod
    def get_decision_tree_model(**params):
        """
        Return a decision tree model
        :return:
        """
        if not all(params.values()):
            params = {
                "max_features": ["auto", "sqrt", "log2"],
                "ccp_alpha": [0.1, 0.01, 0.001],
                "max_depth": [5, 6, 7, 8, 9],
                "criterion": ["gini", "entropy"],
            }

        model = DecisionTreeClassifier()
        model = GridSearchCV(
            estimator=model,
            param_grid=params,
            cv=3,
            verbose=False,
            scoring="roc_auc",
            refit=True,
        )
        return model

    @staticmethod
    def get_neural_network_model(**params_nn):
        """
        Return a neutral network model
        :return:
        """
        if not all(params_nn.values()):
            params_nn = {
                "solver": ["lbfgs"],
                "max_iter": [
                    1000,
                    1100,
                    1200,
                    1300,
                    1400,
                    1500,
                    1600,
                    1700,
                    1800,
                    1900,
                    2000,
                ],
                "alpha": 10.0 ** -np.arange(1, 10),
                "hidden_layer_sizes": np.arange(10, 15),
                "random_state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            }

        model_nn = MLPClassifier()
        model_nn = GridSearchCV(
            model_nn, params_nn, n_jobs=-1, scoring="roc_auc", refit=True, verbose=False
        )
        return model_nn

    @staticmethod
    def get_random_forest_model(**params_rf):
        """
        Return a random forest model
        :return:
        """
        if not all(params_rf.values()):
            params_rf = {
                "max_depth": [20],
                "min_samples_split": [10],
                "max_leaf_nodes": [175],
                "min_samples_leaf": [5],
                "n_estimators": [250],
                "max_features": ["sqrt"],
            }

        model_rf = RandomForestClassifier()
        model_rf = GridSearchCV(
            model_rf,
            params_rf,
            cv=3,
            n_jobs=-1,
            verbose=False,
            scoring="roc_auc",
            refit=True,
        )

        return model_rf

    @staticmethod
    def get_light_gbm_model(**params_lgb):
        """
        Return a LightGBM model
        :return:
        """
        if not all(params_lgb.values()):
            params_lgb = {
                "learning_rate": [0.005, 0.01],
                "n_estimators": [8, 16, 24],
                "num_leaves": [
                    6,
                    8,
                    12,
                    16,
                ],  # large num_leaves helps improve accuracy but might lead to over-fitting
                "boosting_type": ["gbdt", "dart"],  # for better accuracy -> try dart
                "objective": ["binary"],
                "max_bin": [
                    255,
                    510,
                ],  # large max_bin helps improve accuracy but might slow down training progress
                "random_state": [500],
                "colsample_bytree": [0.64, 0.65, 0.66],
                "subsample": [0.7, 0.75],
                "reg_alpha": [1, 1.2],
                "reg_lambda": [1, 1.2, 1.4],
            }

        model = lgb.LGBMClassifier()
        model = GridSearchCV(
            model,
            params_lgb,
            verbose=False,
            cv=3,
            n_jobs=-1,
            scoring="roc_auc",
            refit=True,
        )

        return model

    @staticmethod
    def get_xgboost_model(**params_xgb):
        """
        Return a xgboost model
        :return:
        """
        if not all(params_xgb.values()):
            params_xgb = {
                "nthread": [4],  # when use hyper thread, xgboost may become slower
                "objective": ["binary:logistic"],
                "learning_rate": [0.05],  # so called `eta` value
                "max_depth": [6],
                "min_child_weight": [11],
                "silent": [1],
                "subsample": [0.8],
                "colsample_bytree": [0.7],
                "n_estimators": [
                    100
                ],  # number of trees, change it to 1000 for better results
                "missing": [-999],
                "seed": [1337],
            }
        model = GridSearchCV(
            xgb.XGBClassifier(),
            params_xgb,
            n_jobs=-1,
            cv=3,
            scoring="roc_auc",
            refit=True,
        )

        return model

    def fit_and_eval_model(self, x_train, x_test, y_train, y_test):
        """
        Run the model with dataset
        :param x_train:
        :param x_test:
        :param y_train:
        :param y_test:
        :return:
        """
        model_lr, accuracy_lr, roc_auc_lr, coh_kap_lr, tt_lr = self.__run_model(
            self.model, x_train, y_train, x_test, y_test
        )
        return model_lr, accuracy_lr, roc_auc_lr, coh_kap_lr, tt_lr

    @staticmethod
    def get_gradient_boosting_model(**params):
        """
        Return gradient boosting model
        :param params:
        :return:
        """
        if not all(params.values()):
            params = {
                "learning_rate": [0.01, 0.02, 0.03],
                "min_samples_split": [5, 10],
                "min_samples_leaf": [3, 5],
                "max_depth": [3, 5, 10],
                "max_features": ["sqrt"],
                "n_estimators": [100, 200],
            }
        model = GradientBoostingClassifier(random_state=100)
        return GridSearchCV(model, params, cv=3, n_jobs=-1)


base_df, data_df = data_preparing()
x_train, x_test, y_train, y_test = create_dataset(data_df)
ml_model = MLModel(DEFAULT_MODEL)
ml_model.fit_and_eval_model(x_train, x_test, y_train, y_test)