import math import os.path import shutil import gradio as gr import random import requests from configs.config import cfg from ml.model import base_df, ml_model from ml.predictor import Predictor def get_result(team1, prob1, score1, team2, prob2, score2, probtie): if prob1 > prob2 and prob1 > probtie: winner = {"name": team1, "probability": prob1, "goals": score1} loser = {"name": team2, "probability": prob2, "goals": score2} elif prob1 < prob2 and prob2 > probtie: loser = {"name": team1, "probability": prob1, "goals": score1} winner = {"name": team2, "probability": prob2, "goals": score2} else: loser = {"name": None, "probability": 0.0, "goals": score1} winner = {"name": None, "probability": 0.0, "goals": score2} result = { "winner": winner, "loser": loser, "draw": {"probability": probtie}, } return result def function(team1, team2): """ :param team1: :param team2: :return: """ response = requests.get(cfg.live_prediction) if response.status_code == 200: five_thirty_eight_predict = response.json() for match in five_thirty_eight_predict["matches"]: if not ( (team1 == match["team1"] and team2 == match["team2"]) or (team1 == match["team2"] and team2 == match["team1"]) ): continue if match["status"] != "live": result = get_result( match["team1"], match["prob1"], math.ceil(match["adj_score1"]) if "adj_score1" in match else math.ceil(match["o1"] - match["d2"]), match["team2"], match["prob2"], math.ceil(match["adj_score2"]) if "adj_score2" in match else math.ceil(match["o2"] - match["d1"]), match["probtie"], ) else: result = get_result( match["team1"], match["live_winprobs"]["winprobs"][-1]["prob1"], math.ceil(match["adj_score1"]) if "adj_score1" in match else math.ceil(match["o1"] - match["d2"]), match["team2"], match["live_winprobs"]["winprobs"][-1]["prob2"], math.ceil(match["adj_score2"]) if "adj_score2" in match else math.ceil(match["o2"] - match["d1"]), match["probtie"], ) return result draw, winner, winner_proba = predictor.predict(team1, team2) if draw: draw_prob = round(random.uniform(0.7, 0.9), 10) winner_proba = round(random.uniform(0, 1 - draw_prob), 10) loser_proba = 1 - draw_prob - winner_proba return { "winner": {"name": team1, "probability": winner_proba, "goals": None}, "loser": {"name": team2, "probability": loser_proba, "goals": None}, "draw": {"probability": draw_prob}, } else: loser_proba = round(random.uniform(0, 1 - winner_proba), 10) return { "winner": {"name": winner, "probability": winner_proba, "goals": None}, "loser": { "name": team1 if winner == team2 else team2, "probability": loser_proba, "goals": None, }, "draw": {"probability": 1 - winner_proba - loser_proba}, } shutil.copytree( "static", os.path.abspath( os.path.join(os.path.dirname(gr.__file__), "templates/frontend/static") ), dirs_exist_ok=True, ) shutil.copy( "templates/asset.html", os.path.abspath( os.path.join( os.path.dirname(gr.__file__), "templates/frontend/static/asset.html" ) ), ) shutil.copytree( "templates/asset", os.path.abspath( os.path.join(os.path.dirname(gr.__file__), "templates/frontend/static/asset") ), dirs_exist_ok=True, ) predictor = Predictor(base_df, ml_model) examples = ( ("Croatia", "Argentina"), ("Morocco", "France"), ("Argentina", "France"), ("Morocco", "Croatia"), ) examples = [list(x) for x in examples] iface = gr.Interface( fn=function, inputs=[gr.Textbox(placeholder="Qatar"), gr.Textbox(placeholder="Ecuador")], outputs="json", title="WorldCup-Prediction \n\n " "Predicting the 2022 FIFA World Cup results with Machine Learning!", examples=examples, article=f"", ) iface.queue(concurrency_count=5) iface.launch()