phyloforfun commited on
Commit
16506ef
·
1 Parent(s): 2c609f6
Files changed (1) hide show
  1. app.py +42 -62
app.py CHANGED
@@ -212,86 +212,66 @@ def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper,
212
  # return None, None, None, None, None, None, None, None, None, None
213
 
214
 
215
- # Find contours
216
  contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
217
-
218
- # Sort contours by area and keep a significant number, assuming noise has much smaller area
219
  sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
220
-
221
- # Filter out noise based on a predefined area threshold
222
  significant_contours = [cnt for cnt in sorted_contours if cv2.contourArea(cnt) > MIN_AREA]
223
 
224
- # Ensure session_state variables are initialized
225
- if 'valid_quadrilaterals' not in st.session_state:
226
  st.session_state.valid_quadrilaterals = [perm for perm in itertools.permutations(significant_contours, 4) if is_valid_quadrilateral(get_points_from_contours(perm))]
 
 
 
 
 
 
227
  if 'selected_quad_index' not in st.session_state:
228
  st.session_state.selected_quad_index = 0
229
  if 'centroids' not in st.session_state:
230
- st.session_state.centroids = get_points_from_contours(st.session_state.valid_quadrilaterals[0])
231
-
232
- # Logic to handle cases where there are more than 4 significant contours
233
- if len(significant_contours) < 4:
234
- with loc:
235
- st.info("Not enough points to form a quadrilateral.")
236
- return None, None, None, None, None, None, None, None, None, None
237
- else:
238
- # Generate all permutations of four points
239
- permutations_of_four = list(itertools.permutations(significant_contours, 4))
240
- valid_quadrilaterals = [perm for perm in permutations_of_four if is_valid_quadrilateral(get_points_from_contours(perm))]
241
-
242
- if not valid_quadrilaterals:
243
- with loc:
244
- st.info("No valid quadrilaterals found.")
245
- return None, None, None, None, None, None, None, None, None, None
246
-
247
- # Initial quadrilateral index
248
- st.session_state['selected_quad_index'] = 0
249
- st.session_state.centroids = get_points_from_contours(valid_quadrilaterals[st.session_state['selected_quad_index']])
250
-
251
-
252
- # Show initial quadrilateral
253
- st.session_state.centroids = update_displayed_quadrilateral(st.session_state['selected_quad_index'])
254
 
 
 
255
  with btn_back:
256
  if st.button('Previous'):
257
  decrement_index() # Call function to decrement index
258
 
259
  with btn_next:
260
  if st.button('Next'):
261
- increment_index()
262
-
263
- poly_mask = create_polygon_mask(st.session_state.centroids, flag_mask.shape)
264
 
265
- # Mask the plant_mask with poly_mask
266
- mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
267
 
268
- # Count the number of black pixels inside the quadrilateral
269
- total_pixels_in_quad = np.prod(poly_mask.shape)
270
- white_pixels_in_quad = np.sum(poly_mask == 255)
271
- black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
272
-
273
- # Extract the RGB pixels from the original image using the mask_plant_plot
274
- plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
275
 
276
- # Draw the bounding quadrilateral
277
- plot_rgb = plant_rgb.copy()
278
- for i in range(4):
279
- cv2.line(plot_rgb, st.session_state.centroids[i], st.session_state.centroids[(i+1)%4], (0, 0, 255), 3)
280
-
281
- # Convert the masks to RGB for visualization
282
- flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
283
- orange_color = [255, 165, 0] # RGB value for orange
284
- flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
285
-
286
- plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
287
- mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
288
- bright_green_color = [0, 255, 0]
289
- plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
290
- mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
291
-
292
- # Warp the images
293
- plant_rgb_warp = warp_image(plant_rgb, st.session_state.centroids)
294
- plant_mask_warp = warp_image(mask_plant_plot_rgb, st.session_state.centroids)
 
 
 
 
 
 
 
 
295
 
296
  return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
297
 
 
212
  # return None, None, None, None, None, None, None, None, None, None
213
 
214
 
 
215
  contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 
 
216
  sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
 
 
217
  significant_contours = [cnt for cnt in sorted_contours if cv2.contourArea(cnt) > MIN_AREA]
218
 
219
+ # Generate all permutations of four points and filter valid quadrilaterals
220
+ if 'valid_quadrilaterals' not in st.session_state or st.session_state.valid_quadrilaterals is None:
221
  st.session_state.valid_quadrilaterals = [perm for perm in itertools.permutations(significant_contours, 4) if is_valid_quadrilateral(get_points_from_contours(perm))]
222
+
223
+ if not st.session_state.valid_quadrilaterals:
224
+ st.warning("No valid quadrilaterals found.")
225
+ return None, None, None, None, None, None, None, None, None, None
226
+
227
+ # Initialize or update the selected_quad_index and centroids
228
  if 'selected_quad_index' not in st.session_state:
229
  st.session_state.selected_quad_index = 0
230
  if 'centroids' not in st.session_state:
231
+ st.session_state.centroids = get_points_from_contours(st.session_state.valid_quadrilaterals[st.session_state.selected_quad_index])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
233
+ # Logic to handle cases where there are 4 or more significant contours
234
+ if len(significant_contours) >= 4:
235
  with btn_back:
236
  if st.button('Previous'):
237
  decrement_index() # Call function to decrement index
238
 
239
  with btn_next:
240
  if st.button('Next'):
241
+ increment_index() # Call function to increment index
 
 
242
 
243
+ poly_mask = create_polygon_mask(st.session_state.centroids, flag_mask.shape)
 
244
 
245
+ # Mask the plant_mask with poly_mask
246
+ mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
 
 
 
 
 
247
 
248
+ # Count the number of black pixels inside the quadrilateral
249
+ total_pixels_in_quad = np.prod(poly_mask.shape)
250
+ white_pixels_in_quad = np.sum(poly_mask == 255)
251
+ black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
252
+
253
+ # Extract the RGB pixels from the original image using the mask_plant_plot
254
+ plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
255
+
256
+ # Draw the bounding quadrilateral
257
+ plot_rgb = plant_rgb.copy()
258
+ for i in range(4):
259
+ cv2.line(plot_rgb, st.session_state.centroids[i], st.session_state.centroids[(i+1)%4], (0, 0, 255), 3)
260
+
261
+ # Convert the masks to RGB for visualization
262
+ flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
263
+ orange_color = [255, 165, 0] # RGB value for orange
264
+ flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
265
+
266
+ plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
267
+ mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
268
+ bright_green_color = [0, 255, 0]
269
+ plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
270
+ mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
271
+
272
+ # Warp the images
273
+ plant_rgb_warp = warp_image(plant_rgb, st.session_state.centroids)
274
+ plant_mask_warp = warp_image(mask_plant_plot_rgb, st.session_state.centroids)
275
 
276
  return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
277