Spaces:
Runtime error
Runtime error
Commit
·
5a0ce16
1
Parent(s):
8345aa0
update
Browse files
app.py
CHANGED
@@ -188,6 +188,50 @@ def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper,
|
|
188 |
if st.button('Next'):
|
189 |
selected_quad_index = min(selected_quad_index + 1, len(point_combinations) - 1)
|
190 |
centroids = update_displayed_quadrilateral(selected_quad_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
# If there are exactly 4 largest contours, proceed with existing logic
|
193 |
elif len(significant_contours) == 4:
|
@@ -204,50 +248,50 @@ def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper,
|
|
204 |
else:
|
205 |
cx, cy = 0, 0
|
206 |
centroids.append((cx, cy))
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
|
212 |
-
|
213 |
-
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
|
250 |
-
|
251 |
|
252 |
def calculate_coverage(mask_plant_plot, plant_mask_warp, black_pixels_in_quad):
|
253 |
# Calculate the percentage of white pixels for mask_plant_plot
|
|
|
188 |
if st.button('Next'):
|
189 |
selected_quad_index = min(selected_quad_index + 1, len(point_combinations) - 1)
|
190 |
centroids = update_displayed_quadrilateral(selected_quad_index)
|
191 |
+
#############
|
192 |
+
# Compute the centroid of the centroids
|
193 |
+
centroid_x = sum(x for x, y in centroids) / 4
|
194 |
+
centroid_y = sum(y for x, y in centroids) / 4
|
195 |
+
|
196 |
+
# Sort the centroids
|
197 |
+
centroids.sort(key=lambda point: (-math.atan2(point[1] - centroid_y, point[0] - centroid_x)) % (2 * np.pi))
|
198 |
+
|
199 |
+
# Create a polygon mask using the sorted centroids
|
200 |
+
poly_mask = np.zeros_like(flag_mask)
|
201 |
+
cv2.fillPoly(poly_mask, [np.array(centroids)], 255)
|
202 |
+
|
203 |
+
# Mask the plant_mask with poly_mask
|
204 |
+
mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
|
205 |
+
|
206 |
+
# Count the number of black pixels inside the quadrilateral
|
207 |
+
total_pixels_in_quad = np.prod(poly_mask.shape)
|
208 |
+
white_pixels_in_quad = np.sum(poly_mask == 255)
|
209 |
+
black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
|
210 |
+
|
211 |
+
# Extract the RGB pixels from the original image using the mask_plant_plot
|
212 |
+
plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
|
213 |
+
|
214 |
+
# Draw the bounding quadrilateral
|
215 |
+
plot_rgb = plant_rgb.copy()
|
216 |
+
for i in range(4):
|
217 |
+
cv2.line(plot_rgb, centroids[i], centroids[(i+1)%4], (0, 0, 255), 3)
|
218 |
+
|
219 |
+
# Convert the masks to RGB for visualization
|
220 |
+
flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
|
221 |
+
orange_color = [255, 165, 0] # RGB value for orange
|
222 |
+
flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
|
223 |
+
|
224 |
+
plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
|
225 |
+
mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
|
226 |
+
bright_green_color = [0, 255, 0]
|
227 |
+
plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
228 |
+
mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
229 |
+
|
230 |
+
# Warp the images
|
231 |
+
plant_rgb_warp = warp_image(plant_rgb, centroids)
|
232 |
+
plant_mask_warp = warp_image(mask_plant_plot_rgb, centroids)
|
233 |
+
|
234 |
+
return flag_mask_rgb, pla
|
235 |
|
236 |
# If there are exactly 4 largest contours, proceed with existing logic
|
237 |
elif len(significant_contours) == 4:
|
|
|
248 |
else:
|
249 |
cx, cy = 0, 0
|
250 |
centroids.append((cx, cy))
|
251 |
+
########################
|
252 |
+
# Compute the centroid of the centroids
|
253 |
+
centroid_x = sum(x for x, y in centroids) / 4
|
254 |
+
centroid_y = sum(y for x, y in centroids) / 4
|
255 |
|
256 |
+
# Sort the centroids
|
257 |
+
centroids.sort(key=lambda point: (-math.atan2(point[1] - centroid_y, point[0] - centroid_x)) % (2 * np.pi))
|
258 |
|
259 |
+
# Create a polygon mask using the sorted centroids
|
260 |
+
poly_mask = np.zeros_like(flag_mask)
|
261 |
+
cv2.fillPoly(poly_mask, [np.array(centroids)], 255)
|
262 |
+
|
263 |
+
# Mask the plant_mask with poly_mask
|
264 |
+
mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
|
265 |
|
266 |
+
# Count the number of black pixels inside the quadrilateral
|
267 |
+
total_pixels_in_quad = np.prod(poly_mask.shape)
|
268 |
+
white_pixels_in_quad = np.sum(poly_mask == 255)
|
269 |
+
black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
|
270 |
+
|
271 |
+
# Extract the RGB pixels from the original image using the mask_plant_plot
|
272 |
+
plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
|
273 |
+
|
274 |
+
# Draw the bounding quadrilateral
|
275 |
+
plot_rgb = plant_rgb.copy()
|
276 |
+
for i in range(4):
|
277 |
+
cv2.line(plot_rgb, centroids[i], centroids[(i+1)%4], (0, 0, 255), 3)
|
278 |
+
|
279 |
+
# Convert the masks to RGB for visualization
|
280 |
+
flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
|
281 |
+
orange_color = [255, 165, 0] # RGB value for orange
|
282 |
+
flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
|
283 |
+
|
284 |
+
plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
|
285 |
+
mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
|
286 |
+
bright_green_color = [0, 255, 0]
|
287 |
+
plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
288 |
+
mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
289 |
+
|
290 |
+
# Warp the images
|
291 |
+
plant_rgb_warp = warp_image(plant_rgb, centroids)
|
292 |
+
plant_mask_warp = warp_image(mask_plant_plot_rgb, centroids)
|
293 |
|
294 |
+
return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
|
295 |
|
296 |
def calculate_coverage(mask_plant_plot, plant_mask_warp, black_pixels_in_quad):
|
297 |
# Calculate the percentage of white pixels for mask_plant_plot
|