Spaces:
Runtime error
Runtime error
Commit
·
8e42a00
1
Parent(s):
3488a26
update
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import os, math, csv, shutil
|
2 |
import streamlit as st
|
3 |
from streamlit_image_select import image_select
|
4 |
import cv2
|
@@ -10,7 +10,7 @@ from io import BytesIO
|
|
10 |
|
11 |
MAX_GALLERY_IMAGES = 50
|
12 |
GALLERY_IMAGE_SIZE = 128
|
13 |
-
|
14 |
|
15 |
class DirectoryManager:
|
16 |
def __init__(self, output_dir):
|
@@ -72,6 +72,49 @@ def warp_image(img, vertices):
|
|
72 |
|
73 |
return warped_img
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
|
76 |
img = cv2.imread(image_path)
|
77 |
|
@@ -91,30 +134,71 @@ def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
|
|
91 |
flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
|
92 |
plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
|
93 |
|
94 |
-
# Find contours
|
95 |
-
contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
96 |
|
97 |
-
# Sort contours by area and keep only the largest 4
|
98 |
-
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
|
99 |
|
100 |
-
# If there are not 4 largest contours, return
|
101 |
-
if len(sorted_contours) != 4:
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
centroids = []
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Compute the centroid of the centroids
|
120 |
centroid_x = sum(x for x, y in centroids) / 4
|
|
|
1 |
+
import os, math, csv, shutil, itertools
|
2 |
import streamlit as st
|
3 |
from streamlit_image_select import image_select
|
4 |
import cv2
|
|
|
10 |
|
11 |
MAX_GALLERY_IMAGES = 50
|
12 |
GALLERY_IMAGE_SIZE = 128
|
13 |
+
MIN_AREA = 10
|
14 |
|
15 |
class DirectoryManager:
|
16 |
def __init__(self, output_dir):
|
|
|
72 |
|
73 |
return warped_img
|
74 |
|
75 |
+
# Assuming get_points_from_contours is a function that takes a tuple of four contours
|
76 |
+
# and returns their respective centroid points as a list of tuples [(x1,y1), (x2,y2), (x3,y3), (x4,y4)]
|
77 |
+
def get_points_from_contours(contours):
|
78 |
+
centroids = []
|
79 |
+
for contour in contours:
|
80 |
+
# Compute the centroid for the contour
|
81 |
+
M = cv2.moments(contour)
|
82 |
+
if M["m00"] != 0:
|
83 |
+
cX = int(M["m10"] / M["m00"])
|
84 |
+
cY = int(M["m01"] / M["m00"])
|
85 |
+
centroids.append((cX, cY))
|
86 |
+
else:
|
87 |
+
# If the contour is a single point or line (which should not happen with flags), handle it here
|
88 |
+
pass
|
89 |
+
return centroids
|
90 |
+
|
91 |
+
# Function to display the image with the selected quadrilateral superimposed
|
92 |
+
def display_image_with_quadrilateral(image, points):
|
93 |
+
# Make a copy of the image to draw on
|
94 |
+
overlay_image = image.copy()
|
95 |
+
|
96 |
+
# Draw the quadrilateral
|
97 |
+
cv2.polylines(overlay_image, [np.array(points)], isClosed=True, color=(0, 255, 0), thickness=3)
|
98 |
+
|
99 |
+
# Display the image with the quadrilateral
|
100 |
+
st.image(overlay_image, caption="Quadrilateral on Image", use_column_width='auto')
|
101 |
+
|
102 |
+
# Function to update displayed quadrilateral based on selected index
|
103 |
+
def update_displayed_quadrilateral(index, point_combinations, base_image_path):
|
104 |
+
# Extract the four points of the current quadrilateral
|
105 |
+
quad_points = get_points_from_contours(point_combinations[index])
|
106 |
+
|
107 |
+
# Read the base image
|
108 |
+
base_image = cv2.imread(base_image_path)
|
109 |
+
|
110 |
+
# If the image is not found, handle the error appropriately
|
111 |
+
if base_image is None:
|
112 |
+
st.error("Failed to load image.")
|
113 |
+
return
|
114 |
+
|
115 |
+
# Display the image with the selected quadrilateral
|
116 |
+
display_image_with_quadrilateral(base_image, quad_points)
|
117 |
+
|
118 |
def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
|
119 |
img = cv2.imread(image_path)
|
120 |
|
|
|
134 |
flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
|
135 |
plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
|
136 |
|
137 |
+
# # Find contours
|
138 |
+
# contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
139 |
|
140 |
+
# # Sort contours by area and keep only the largest 4
|
141 |
+
# sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
|
142 |
|
143 |
+
# # If there are not 4 largest contours, return
|
144 |
+
# if len(sorted_contours) != 4:
|
145 |
+
# return None, None, None, None, None, None, None, None, None, None
|
146 |
|
147 |
+
|
148 |
+
# Find contours
|
149 |
+
contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
150 |
+
|
151 |
+
# Sort contours by area and keep a significant number, assuming noise has much smaller area
|
152 |
+
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
153 |
+
|
154 |
+
# Filter out noise based on a predefined area threshold
|
155 |
+
significant_contours = [cnt for cnt in sorted_contours if cv2.contourArea(cnt) > MIN_AREA]
|
156 |
+
|
157 |
+
# Logic to handle cases where there are more than 4 significant contours
|
158 |
centroids = []
|
159 |
+
if len(significant_contours) < 4:
|
160 |
+
return None, None, None, None, None, None, None, None, None, None
|
161 |
+
elif len(significant_contours) > 4:
|
162 |
+
# Create all possible combinations of four points
|
163 |
+
point_combinations = list(itertools.combinations(significant_contours, 4))
|
164 |
+
|
165 |
+
# Placeholder for quadrilateral indices
|
166 |
+
selected_quad_index = 0
|
167 |
+
|
168 |
+
# Function to update displayed quadrilateral based on selected index
|
169 |
+
def update_displayed_quadrilateral(index):
|
170 |
+
# Extract the four points of the current quadrilateral
|
171 |
+
centroids = get_points_from_contours(point_combinations[index])
|
172 |
+
return centroids
|
173 |
+
|
174 |
+
# Show initial quadrilateral
|
175 |
+
centroids = update_displayed_quadrilateral(selected_quad_index)
|
176 |
+
|
177 |
+
# Button to go to the previous quadrilateral
|
178 |
+
if st.button('Previous'):
|
179 |
+
selected_quad_index = max(selected_quad_index - 1, 0)
|
180 |
+
centroids = update_displayed_quadrilateral(selected_quad_index)
|
181 |
+
|
182 |
+
# Button to go to the next quadrilateral
|
183 |
+
if st.button('Next'):
|
184 |
+
selected_quad_index = min(selected_quad_index + 1, len(point_combinations) - 1)
|
185 |
+
centroids = update_displayed_quadrilateral(selected_quad_index)
|
186 |
+
|
187 |
+
# If there are exactly 4 largest contours, proceed with existing logic
|
188 |
+
elif len(significant_contours) == 4:
|
189 |
+
# Create a new mask with only the largest 4 contours
|
190 |
+
largest_4_flag_mask = np.zeros_like(flag_mask)
|
191 |
+
cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
|
192 |
+
|
193 |
+
# Compute the centroid for each contour
|
194 |
+
for contour in sorted_contours:
|
195 |
+
M = cv2.moments(contour)
|
196 |
+
if M["m00"] != 0:
|
197 |
+
cx = int(M["m10"] / M["m00"])
|
198 |
+
cy = int(M["m01"] / M["m00"])
|
199 |
+
else:
|
200 |
+
cx, cy = 0, 0
|
201 |
+
centroids.append((cx, cy))
|
202 |
|
203 |
# Compute the centroid of the centroids
|
204 |
centroid_x = sum(x for x, y in centroids) / 4
|