phyloforfun commited on
Commit
8e42a00
·
1 Parent(s): 3488a26
Files changed (1) hide show
  1. app.py +106 -22
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import os, math, csv, shutil
2
  import streamlit as st
3
  from streamlit_image_select import image_select
4
  import cv2
@@ -10,7 +10,7 @@ from io import BytesIO
10
 
11
  MAX_GALLERY_IMAGES = 50
12
  GALLERY_IMAGE_SIZE = 128
13
-
14
 
15
  class DirectoryManager:
16
  def __init__(self, output_dir):
@@ -72,6 +72,49 @@ def warp_image(img, vertices):
72
 
73
  return warped_img
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
76
  img = cv2.imread(image_path)
77
 
@@ -91,30 +134,71 @@ def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
91
  flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
92
  plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
93
 
94
- # Find contours
95
- contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
96
 
97
- # Sort contours by area and keep only the largest 4
98
- sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
99
 
100
- # If there are not 4 largest contours, return
101
- if len(sorted_contours) != 4:
102
- return None, None, None, None, None, None, None, None, None, None
103
 
104
- # Create a new mask with only the largest 4 contours
105
- largest_4_flag_mask = np.zeros_like(flag_mask)
106
- cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
107
-
108
- # Compute the centroid for each contour
 
 
 
 
 
 
109
  centroids = []
110
- for contour in sorted_contours:
111
- M = cv2.moments(contour)
112
- if M["m00"] != 0:
113
- cx = int(M["m10"] / M["m00"])
114
- cy = int(M["m01"] / M["m00"])
115
- else:
116
- cx, cy = 0, 0
117
- centroids.append((cx, cy))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
  # Compute the centroid of the centroids
120
  centroid_x = sum(x for x, y in centroids) / 4
 
1
+ import os, math, csv, shutil, itertools
2
  import streamlit as st
3
  from streamlit_image_select import image_select
4
  import cv2
 
10
 
11
  MAX_GALLERY_IMAGES = 50
12
  GALLERY_IMAGE_SIZE = 128
13
+ MIN_AREA = 10
14
 
15
  class DirectoryManager:
16
  def __init__(self, output_dir):
 
72
 
73
  return warped_img
74
 
75
+ # Assuming get_points_from_contours is a function that takes a tuple of four contours
76
+ # and returns their respective centroid points as a list of tuples [(x1,y1), (x2,y2), (x3,y3), (x4,y4)]
77
+ def get_points_from_contours(contours):
78
+ centroids = []
79
+ for contour in contours:
80
+ # Compute the centroid for the contour
81
+ M = cv2.moments(contour)
82
+ if M["m00"] != 0:
83
+ cX = int(M["m10"] / M["m00"])
84
+ cY = int(M["m01"] / M["m00"])
85
+ centroids.append((cX, cY))
86
+ else:
87
+ # If the contour is a single point or line (which should not happen with flags), handle it here
88
+ pass
89
+ return centroids
90
+
91
+ # Function to display the image with the selected quadrilateral superimposed
92
+ def display_image_with_quadrilateral(image, points):
93
+ # Make a copy of the image to draw on
94
+ overlay_image = image.copy()
95
+
96
+ # Draw the quadrilateral
97
+ cv2.polylines(overlay_image, [np.array(points)], isClosed=True, color=(0, 255, 0), thickness=3)
98
+
99
+ # Display the image with the quadrilateral
100
+ st.image(overlay_image, caption="Quadrilateral on Image", use_column_width='auto')
101
+
102
+ # Function to update displayed quadrilateral based on selected index
103
+ def update_displayed_quadrilateral(index, point_combinations, base_image_path):
104
+ # Extract the four points of the current quadrilateral
105
+ quad_points = get_points_from_contours(point_combinations[index])
106
+
107
+ # Read the base image
108
+ base_image = cv2.imread(base_image_path)
109
+
110
+ # If the image is not found, handle the error appropriately
111
+ if base_image is None:
112
+ st.error("Failed to load image.")
113
+ return
114
+
115
+ # Display the image with the selected quadrilateral
116
+ display_image_with_quadrilateral(base_image, quad_points)
117
+
118
  def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
119
  img = cv2.imread(image_path)
120
 
 
134
  flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
135
  plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
136
 
137
+ # # Find contours
138
+ # contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
139
 
140
+ # # Sort contours by area and keep only the largest 4
141
+ # sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
142
 
143
+ # # If there are not 4 largest contours, return
144
+ # if len(sorted_contours) != 4:
145
+ # return None, None, None, None, None, None, None, None, None, None
146
 
147
+
148
+ # Find contours
149
+ contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
150
+
151
+ # Sort contours by area and keep a significant number, assuming noise has much smaller area
152
+ sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
153
+
154
+ # Filter out noise based on a predefined area threshold
155
+ significant_contours = [cnt for cnt in sorted_contours if cv2.contourArea(cnt) > MIN_AREA]
156
+
157
+ # Logic to handle cases where there are more than 4 significant contours
158
  centroids = []
159
+ if len(significant_contours) < 4:
160
+ return None, None, None, None, None, None, None, None, None, None
161
+ elif len(significant_contours) > 4:
162
+ # Create all possible combinations of four points
163
+ point_combinations = list(itertools.combinations(significant_contours, 4))
164
+
165
+ # Placeholder for quadrilateral indices
166
+ selected_quad_index = 0
167
+
168
+ # Function to update displayed quadrilateral based on selected index
169
+ def update_displayed_quadrilateral(index):
170
+ # Extract the four points of the current quadrilateral
171
+ centroids = get_points_from_contours(point_combinations[index])
172
+ return centroids
173
+
174
+ # Show initial quadrilateral
175
+ centroids = update_displayed_quadrilateral(selected_quad_index)
176
+
177
+ # Button to go to the previous quadrilateral
178
+ if st.button('Previous'):
179
+ selected_quad_index = max(selected_quad_index - 1, 0)
180
+ centroids = update_displayed_quadrilateral(selected_quad_index)
181
+
182
+ # Button to go to the next quadrilateral
183
+ if st.button('Next'):
184
+ selected_quad_index = min(selected_quad_index + 1, len(point_combinations) - 1)
185
+ centroids = update_displayed_quadrilateral(selected_quad_index)
186
+
187
+ # If there are exactly 4 largest contours, proceed with existing logic
188
+ elif len(significant_contours) == 4:
189
+ # Create a new mask with only the largest 4 contours
190
+ largest_4_flag_mask = np.zeros_like(flag_mask)
191
+ cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
192
+
193
+ # Compute the centroid for each contour
194
+ for contour in sorted_contours:
195
+ M = cv2.moments(contour)
196
+ if M["m00"] != 0:
197
+ cx = int(M["m10"] / M["m00"])
198
+ cy = int(M["m01"] / M["m00"])
199
+ else:
200
+ cx, cy = 0, 0
201
+ centroids.append((cx, cy))
202
 
203
  # Compute the centroid of the centroids
204
  centroid_x = sum(x for x, y in centroids) / 4