Spaces:
Running
Running
File size: 56,751 Bytes
87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 |
import os, sys, inspect, json, shutil, cv2, time, glob #imagesize
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from PIL import Image
from tqdm import tqdm
from time import perf_counter
import concurrent.futures
from threading import Lock
from collections import defaultdict
import multiprocessing
import torch
currentdir = os.path.dirname(inspect.getfile(inspect.currentframe()))
parentdir = os.path.dirname(currentdir)
sys.path.append(currentdir)
from detect import run
sys.path.append(parentdir)
from landmark_processing import LeafSkeleton
from armature_processing import ArmatureSkeleton
def detect_plant_components(cfg, logger, dir_home, Project, Dirs):
t1_start = perf_counter()
logger.name = 'Locating Plant Components'
logger.info(f"Detecting plant components in {len(os.listdir(Project.dir_images))} images")
try:
dir_exisiting_labels = cfg['leafmachine']['project']['use_existing_plant_component_detections']
except:
dir_exisiting_labels = None
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 1
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
# Weights folder base
dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train')
# Detection threshold
threshold = cfg['leafmachine']['plant_component_detector']['minimum_confidence_threshold']
detector_version = cfg['leafmachine']['plant_component_detector']['detector_version']
detector_iteration = cfg['leafmachine']['plant_component_detector']['detector_iteration']
detector_weights = cfg['leafmachine']['plant_component_detector']['detector_weights']
weights = os.path.join(dir_weights,'Plant_Detector',detector_version,detector_iteration,'weights',detector_weights)
do_save_prediction_overlay_images = not cfg['leafmachine']['plant_component_detector']['do_save_prediction_overlay_images']
ignore_objects = cfg['leafmachine']['plant_component_detector']['ignore_objects_for_overlay']
ignore_objects = ignore_objects or []
if dir_exisiting_labels != None:
logger.info("Loading existing plant labels")
fetch_labels(dir_exisiting_labels, os.path.join(Dirs.path_plant_components, 'labels'))
if len(Project.dir_images) <= 4000:
logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000")
A = create_dictionary_from_txt(logger, dir_exisiting_labels, 'Detections_Plant_Components', Project)
else:
logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000")
A = create_dictionary_from_txt_parallel(logger, cfg, dir_exisiting_labels, 'Detections_Plant_Components', Project)
else:
logger.info("Running YOLOv5 to generate plant labels")
# run(weights = weights,
# source = Project.dir_images,
# project = Dirs.path_plant_components,
# name = Dirs.run_name,
# imgsz = (1280, 1280),
# nosave = do_save_prediction_overlay_images,
# anno_type = 'Plant_Detector',
# conf_thres = threshold,
# ignore_objects_for_overlay = ignore_objects,
# mode = 'LM2',
# LOGGER=logger,)
source = Project.dir_images
project = Dirs.path_plant_components
name = Dirs.run_name
imgsz = (1280, 1280)
nosave = do_save_prediction_overlay_images
anno_type = 'Plant_Detector'
conf_thres = threshold
ignore_objects_for_overlay = ignore_objects
mode = 'LM2'
LOGGER = logger
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type,
conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in
range(num_workers)]
for future in concurrent.futures.as_completed(futures):
try:
_ = future.result()
except Exception as e:
logger.error(f'Error in thread: {e}')
continue
t2_stop = perf_counter()
logger.info(f"[Plant components detection elapsed time] {round(t2_stop - t1_start)} seconds")
logger.info(f"Threads [{num_workers}]")
if len(Project.dir_images) <= 4000:
logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000")
A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_plant_components, 'labels'), 'Detections_Plant_Components', Project)
else:
logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000")
A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_plant_components, 'labels'), 'Detections_Plant_Components', Project)
dict_to_json(Project.project_data, Dirs.path_plant_components, 'Detections_Plant_Components.json')
t1_stop = perf_counter()
logger.info(f"[Processing plant components elapsed time] {round(t1_stop - t1_start)} seconds")
torch.cuda.empty_cache()
return Project
def detect_archival_components(cfg, logger, dir_home, Project, Dirs):
if not cfg['leafmachine']['use_RGB_label_images']:
logger.name = 'Skipping LeafMachine2 Label Detection'
logger.info(f"Full image will be used instead of the label collage")
else:
t1_start = perf_counter()
logger.name = 'Locating Archival Components'
logger.info(f"Detecting archival components in {len(os.listdir(Project.dir_images))} images")
try:
dir_exisiting_labels = cfg['leafmachine']['project']['use_existing_archival_component_detections']
except:
dir_exisiting_labels = None
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 1
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
# Weights folder base
dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train')
# Detection threshold
threshold = cfg['leafmachine']['archival_component_detector']['minimum_confidence_threshold']
detector_version = cfg['leafmachine']['archival_component_detector']['detector_version']
detector_iteration = cfg['leafmachine']['archival_component_detector']['detector_iteration']
detector_weights = cfg['leafmachine']['archival_component_detector']['detector_weights']
weights = os.path.join(dir_weights,'Archival_Detector',detector_version,detector_iteration,'weights',detector_weights)
do_save_prediction_overlay_images = not cfg['leafmachine']['archival_component_detector']['do_save_prediction_overlay_images']
ignore_objects = cfg['leafmachine']['archival_component_detector']['ignore_objects_for_overlay']
ignore_objects = ignore_objects or []
if dir_exisiting_labels != None:
logger.info("Loading existing archival labels")
fetch_labels(dir_exisiting_labels, os.path.join(Dirs.path_archival_components, 'labels'))
if len(Project.dir_images) <= 4000:
logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000")
A = create_dictionary_from_txt(logger, dir_exisiting_labels, 'Detections_Archival_Components', Project)
else:
logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000")
A = create_dictionary_from_txt_parallel(logger, cfg, dir_exisiting_labels, 'Detections_Archival_Components', Project)
else:
logger.info("Running YOLOv5 to generate archival labels")
# run(weights = weights,
# source = Project.dir_images,
# project = Dirs.path_archival_components,
# name = Dirs.run_name,
# imgsz = (1280, 1280),
# nosave = do_save_prediction_overlay_images,
# anno_type = 'Archival_Detector',
# conf_thres = threshold,
# ignore_objects_for_overlay = ignore_objects,
# mode = 'LM2',
# LOGGER=logger)
# split the image paths into 4 chunks
source = Project.dir_images
project = Dirs.path_archival_components
name = Dirs.run_name
imgsz = (1280, 1280)
nosave = do_save_prediction_overlay_images
anno_type = 'Archival_Detector'
conf_thres = threshold
ignore_objects_for_overlay = ignore_objects
mode = 'LM2'
LOGGER = logger
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type,
conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in
range(num_workers)]
for future in concurrent.futures.as_completed(futures):
try:
_ = future.result()
except Exception as e:
logger.error(f'Error in thread: {e}')
continue
t2_stop = perf_counter()
logger.info(f"[Archival components detection elapsed time] {round(t2_stop - t1_start)} seconds")
logger.info(f"Threads [{num_workers}]")
if len(Project.dir_images) <= 4000:
logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000")
A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_archival_components, 'labels'), 'Detections_Archival_Components', Project)
else:
logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000")
A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_archival_components, 'labels'), 'Detections_Archival_Components', Project)
dict_to_json(Project.project_data, Dirs.path_archival_components, 'Detections_Archival_Components.json')
t1_stop = perf_counter()
logger.info(f"[Processing archival components elapsed time] {round(t1_stop - t1_start)} seconds")
torch.cuda.empty_cache()
return Project
def detect_armature_components(cfg, logger, dir_home, Project, Dirs):
t1_start = perf_counter()
logger.name = 'Locating Armature Components'
logger.info(f"Detecting armature components in {len(os.listdir(Project.dir_images))} images")
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 1
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
# Weights folder base
dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train')
# Detection threshold
threshold = cfg['leafmachine']['armature_component_detector']['minimum_confidence_threshold']
detector_version = cfg['leafmachine']['armature_component_detector']['detector_version']
detector_iteration = cfg['leafmachine']['armature_component_detector']['detector_iteration']
detector_weights = cfg['leafmachine']['armature_component_detector']['detector_weights']
weights = os.path.join(dir_weights,'Armature_Detector',detector_version,detector_iteration,'weights',detector_weights)
do_save_prediction_overlay_images = not cfg['leafmachine']['armature_component_detector']['do_save_prediction_overlay_images']
ignore_objects = cfg['leafmachine']['armature_component_detector']['ignore_objects_for_overlay']
ignore_objects = ignore_objects or []
logger.info("Running YOLOv5 to generate armature labels")
source = Project.dir_images
project = Dirs.path_armature_components
name = Dirs.run_name
imgsz = (1280, 1280)
nosave = do_save_prediction_overlay_images
anno_type = 'Armature_Detector'
conf_thres = threshold
ignore_objects_for_overlay = ignore_objects
mode = 'LM2'
LOGGER = logger
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type,
conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in
range(num_workers)]
for future in concurrent.futures.as_completed(futures):
try:
_ = future.result()
except Exception as e:
logger.error(f'Error in thread: {e}')
continue
t2_stop = perf_counter()
logger.info(f"[Plant components detection elapsed time] {round(t2_stop - t1_start)} seconds")
logger.info(f"Threads [{num_workers}]")
if len(Project.dir_images) <= 4000:
logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000")
A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_armature_components, 'labels'), 'Detections_Armature_Components', Project)
else:
logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000")
A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_armature_components, 'labels'), 'Detections_Armature_Components', Project)
dict_to_json(Project.project_data, Dirs.path_armature_components, 'Detections_Armature_Components.json')
t1_stop = perf_counter()
logger.info(f"[Processing armature components elapsed time] {round(t1_stop - t1_start)} seconds")
torch.cuda.empty_cache()
return Project
''' RUN IN PARALLEL'''
def run_in_parallel(weights, source, project, name, imgsz, nosave, anno_type, conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, chunk, n_workers):
num_files = len(os.listdir(source))
LOGGER.info(f"The number of worker threads: ({n_workers}), number of files ({num_files}).")
chunk_size = len(os.listdir(source)) // n_workers
start = chunk * chunk_size
end = start + chunk_size if chunk < (n_workers-1) else len(os.listdir(source))
sub_source = [os.path.join(source, f) for f in os.listdir(source)[start:end] if f.lower().endswith('.jpg')]
run(weights=weights,
source=sub_source,
project=project,
name=name,
imgsz=imgsz,
nosave=nosave,
anno_type=anno_type,
conf_thres=conf_thres,
ignore_objects_for_overlay=ignore_objects_for_overlay,
mode=mode,
LOGGER=LOGGER)
''' RUN IN PARALLEL'''
###### Multi-thread NOTE this works, but unless there are several thousand images, it will be slower
def process_file(logger, file, dir_components, component, Project, lock):
file_name = str(file.split('.')[0])
with open(os.path.join(dir_components, file), "r") as f:
with lock:
Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
try:
image_path = glob.glob(os.path.join(Project.dir_images, file_name + '.*'))[0]
name_ext = os.path.basename(image_path)
with Image.open(image_path) as im:
_, ext = os.path.splitext(name_ext)
if ext not in ['.jpg']:
im = im.convert('RGB')
im.save(os.path.join(Project.dir_images, file_name) + '.jpg', quality=100)
# file_name += '.jpg'
width, height = im.size
except Exception as e:
print(f"Unable to get image dimensions. Error: {e}")
logger.info(f"Unable to get image dimensions. Error: {e}")
width, height = None, None
if width and height:
Project.project_data[file_name]['height'] = int(height)
Project.project_data[file_name]['width'] = int(width)
def create_dictionary_from_txt_parallel(logger, cfg, dir_components, component, Project):
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 4
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
files = [file for file in os.listdir(dir_components) if file.endswith(".txt")]
lock = Lock()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = []
for file in files:
futures.append(executor.submit(process_file, logger, file, dir_components, component, Project, lock))
for future in concurrent.futures.as_completed(futures):
pass
return Project.project_data
######
# Single threaded
def create_dictionary_from_txt(logger, dir_components, component, Project):
# dict_labels = {}
for file in tqdm(os.listdir(dir_components), desc="Loading Annotations", colour='green'):
if file.endswith(".txt"):
file_name = str(file.split('.')[0])
with open(os.path.join(dir_components, file), "r") as f:
# dict_labels[file] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
try:
image_path = glob.glob(os.path.join(Project.dir_images, file_name + '.*'))[0]
name_ext = os.path.basename(image_path)
with Image.open(image_path) as im:
_, ext = os.path.splitext(name_ext)
if ext not in ['.jpg']:
im = im.convert('RGB')
im.save(os.path.join(Project.dir_images, file_name) + '.jpg', quality=100)
# file_name += '.jpg'
width, height = im.size
except Exception as e:
# print(f"Unable to get image dimensions. Error: {e}")
logger.info(f"Unable to get image dimensions. Error: {e}")
width, height = None, None
if width and height:
Project.project_data[file_name]['height'] = int(height)
Project.project_data[file_name]['width'] = int(width)
# for key, value in dict_labels.items():
# print(f'{key} --> {value}')
return Project.project_data
# old below
'''def create_dictionary_from_txt(dir_components, component, Project):
# dict_labels = {}
for file in os.listdir(dir_components):
if file.endswith(".txt"):
file_name = str(file.split('.')[0])
with open(os.path.join(dir_components, file), "r") as f:
# dict_labels[file] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
try:
width, height = imagesize.get(os.path.join(Project.dir_images, '.'.join([file_name,'jpg'])))
except Exception as e:
print(f"Image not in 'jpg' format. Trying 'jpeg'. Note that other formats are not supported.{e}")
width, height = imagesize.get(os.path.join(Project.dir_images, '.'.join([file_name,'jpeg'])))
Project.project_data[file_name]['height'] = int(height)
Project.project_data[file_name]['width'] = int(width)
# for key, value in dict_labels.items():
# print(f'{key} --> {value}')
return Project.project_data'''
def dict_to_json(dict_labels, dir_components, name_json):
dir_components = os.path.join(dir_components, 'JSON')
with open(os.path.join(dir_components, name_json), "w") as outfile:
json.dump(dict_labels, outfile)
def fetch_labels(dir_exisiting_labels, new_dir):
shutil.copytree(dir_exisiting_labels, new_dir)
'''Landmarks - uses YOLO, but works differently than above. A hybrid between segmentation and component detector'''
def detect_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, segmentation_complete):
start_t = perf_counter()
logger.name = f'[BATCH {batch+1} Detect Landmarks]'
logger.info(f'Detecting landmarks for batch {batch+1} of {n_batches}')
landmark_whole_leaves = cfg['leafmachine']['landmark_detector']['landmark_whole_leaves']
landmark_partial_leaves = cfg['leafmachine']['landmark_detector']['landmark_partial_leaves']
landmarks_whole_leaves_props = {}
landmarks_whole_leaves_overlay = {}
landmarks_partial_leaves_props = {}
landmarks_partial_leaves_overlay = {}
if landmark_whole_leaves:
run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Whole_Leaves', segmentation_complete)
if landmark_partial_leaves:
run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Partial_Leaves', segmentation_complete)
# if cfg['leafmachine']['leaf_segmentation']['segment_whole_leaves']:
# landmarks_whole_leaves_props_batch, landmarks_whole_leaves_overlay_batch = run_landmarks(Instance_Detector_Whole, Project.project_data_list[batch], 0,
# "Segmentation_Whole_Leaf", "Whole_Leaf_Cropped", cfg, Project, Dirs, batch, n_batches)#, start+1, end)
# landmarks_whole_leaves_props.update(landmarks_whole_leaves_props_batch)
# landmarks_whole_leaves_overlay.update(landmarks_whole_leaves_overlay_batch)
# if cfg['leafmachine']['leaf_segmentation']['segment_partial_leaves']:
# landmarks_partial_leaves_props_batch, landmarks_partial_leaves_overlay_batch = run_landmarks(Instance_Detector_Partial, Project.project_data_list[batch], 1,
# "Segmentation_Partial_Leaf", "Partial_Leaf_Cropped", cfg, Project, Dirs, batch, n_batches)#, start+1, end)
# landmarks_partial_leaves_props.update(landmarks_partial_leaves_props_batch)
# landmarks_partial_leaves_overlay.update(landmarks_partial_leaves_overlay_batch)
end_t = perf_counter()
logger.info(f'Batch {batch+1}/{n_batches}: Landmark Detection Duration --> {round((end_t - start_t)/60)} minutes')
return Project
def detect_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, segmentation_complete):
start_t = perf_counter()
logger.name = f'[BATCH {batch+1} Detect Armature]'
logger.info(f'Detecting armature for batch {batch+1} of {n_batches}')
landmark_armature = cfg['leafmachine']['modules']['armature']
landmarks_armature_props = {}
landmarks_armature_overlay = {}
if landmark_armature:
run_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Armature', segmentation_complete)
end_t = perf_counter()
logger.info(f'Batch {batch+1}/{n_batches}: Armature Detection Duration --> {round((end_t - start_t)/60)} minutes')
return Project
def run_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, leaf_type, segmentation_complete):
logger.info('Detecting armature landmarks from scratch')
if leaf_type == 'Landmarks_Armature':
dir_overlay = os.path.join(Dirs.landmarks_armature_overlay, ''.join(['batch_',str(batch+1)]))
# if not segmentation_complete: # If segmentation was run, then don't redo the unpack, just do the crop into the temp folder
if leaf_type == 'Landmarks_Armature': # TODO THE 0 is for prickles. For spines I'll need to add a 1 like with partial_leaves or just do it for all
Project.project_data_list[batch] = unpack_class_from_components_armature(Project.project_data_list[batch], 0, 'Armature_YOLO', 'Armature_BBoxes', Project)
Project.project_data_list[batch], dir_temp = crop_images_to_bbox_armature(Project.project_data_list[batch], 0, 'Armature_Cropped', "Armature_BBoxes", Project, Dirs, True, cfg)
# Weights folder base
dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train')
# Detection threshold
threshold = cfg['leafmachine']['landmark_detector_armature']['minimum_confidence_threshold']
detector_version = cfg['leafmachine']['landmark_detector_armature']['detector_version']
detector_iteration = cfg['leafmachine']['landmark_detector_armature']['detector_iteration']
detector_weights = cfg['leafmachine']['landmark_detector_armature']['detector_weights']
weights = os.path.join(dir_weights,'Landmark_Detector_YOLO',detector_version,detector_iteration,'weights',detector_weights)
do_save_prediction_overlay_images = not cfg['leafmachine']['landmark_detector_armature']['do_save_prediction_overlay_images']
ignore_objects = cfg['leafmachine']['landmark_detector_armature']['ignore_objects_for_overlay']
ignore_objects = ignore_objects or []
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 1
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
has_images = False
if len(os.listdir(dir_temp)) > 0:
has_images = True
source = dir_temp
project = dir_overlay
name = Dirs.run_name
imgsz = (1280, 1280)
nosave = do_save_prediction_overlay_images
anno_type = 'Armature_Detector'
conf_thres = threshold
line_thickness = 2
ignore_objects_for_overlay = ignore_objects
mode = 'Landmark'
LOGGER = logger
# Initialize a Lock object to ensure thread safety
lock = Lock()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type,
conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in
range(num_workers)]
for future in concurrent.futures.as_completed(futures):
try:
_ = future.result()
except Exception as e:
logger.error(f'Error in thread: {e}')
continue
with lock:
if has_images:
dimensions_dict = get_cropped_dimensions(dir_temp)
A = add_to_dictionary_from_txt_armature(cfg, logger, Dirs, leaf_type, os.path.join(dir_overlay, 'labels'), leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches)
else:
# TODO add empty placeholder to the image data
pass
# delete the temp dir
try:
shutil.rmtree(dir_temp)
except:
try:
time.sleep(5)
shutil.rmtree(dir_temp)
except:
try:
time.sleep(5)
shutil.rmtree(dir_temp)
except:
pass
torch.cuda.empty_cache()
return Project
def run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, leaf_type, segmentation_complete):
use_existing_landmark_detections = cfg['leafmachine']['landmark_detector']['use_existing_landmark_detections']
if use_existing_landmark_detections is None:
logger.info('Detecting landmarks from scratch')
if leaf_type == 'Landmarks_Whole_Leaves':
dir_overlay = os.path.join(Dirs.landmarks_whole_leaves_overlay, ''.join(['batch_',str(batch+1)]))
elif leaf_type == 'Landmarks_Partial_Leaves':
dir_overlay = os.path.join(Dirs.landmarks_partial_leaves_overlay, ''.join(['batch_',str(batch+1)]))
# if not segmentation_complete: # If segmentation was run, then don't redo the unpack, just do the crop into the temp folder
if leaf_type == 'Landmarks_Whole_Leaves':
Project.project_data_list[batch] = unpack_class_from_components(Project.project_data_list[batch], 0, 'Whole_Leaf_BBoxes_YOLO', 'Whole_Leaf_BBoxes', Project)
Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 0, 'Whole_Leaf_Cropped', "Whole_Leaf_BBoxes", Project, Dirs)
elif leaf_type == 'Landmarks_Partial_Leaves':
Project.project_data_list[batch] = unpack_class_from_components(Project.project_data_list[batch], 1, 'Partial_Leaf_BBoxes_YOLO', 'Partial_Leaf_BBoxes', Project)
Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 1, 'Partial_Leaf_Cropped', "Partial_Leaf_BBoxes", Project, Dirs)
# else:
# if leaf_type == 'Landmarks_Whole_Leaves':
# Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 0, 'Whole_Leaf_Cropped', "Whole_Leaf_BBoxes", Project, Dirs)
# elif leaf_type == 'Landmarks_Partial_Leaves':
# Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 1, 'Partial_Leaf_Cropped', "Partial_Leaf_BBoxes", Project, Dirs)
# Weights folder base
dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train')
# Detection threshold
threshold = cfg['leafmachine']['landmark_detector']['minimum_confidence_threshold']
detector_version = cfg['leafmachine']['landmark_detector']['detector_version']
detector_iteration = cfg['leafmachine']['landmark_detector']['detector_iteration']
detector_weights = cfg['leafmachine']['landmark_detector']['detector_weights']
weights = os.path.join(dir_weights,'Landmark_Detector_YOLO',detector_version,detector_iteration,'weights',detector_weights)
do_save_prediction_overlay_images = not cfg['leafmachine']['landmark_detector']['do_save_prediction_overlay_images']
ignore_objects = cfg['leafmachine']['landmark_detector']['ignore_objects_for_overlay']
ignore_objects = ignore_objects or []
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 1
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
has_images = False
if len(os.listdir(dir_temp)) > 0:
has_images = True
# run(weights = weights,
# source = dir_temp,
# project = dir_overlay,
# name = Dirs.run_name,
# imgsz = (1280, 1280),
# nosave = do_save_prediction_overlay_images,
# anno_type = 'Landmark_Detector_YOLO',
# conf_thres = threshold,
# line_thickness = 2,
# ignore_objects_for_overlay = ignore_objects,
# mode = 'Landmark')
source = dir_temp
project = dir_overlay
name = Dirs.run_name
imgsz = (1280, 1280)
nosave = do_save_prediction_overlay_images
anno_type = 'Landmark_Detector'
conf_thres = threshold
line_thickness = 2
ignore_objects_for_overlay = ignore_objects
mode = 'Landmark'
LOGGER = logger
# Initialize a Lock object to ensure thread safety
lock = Lock()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type,
conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in
range(num_workers)]
for future in concurrent.futures.as_completed(futures):
try:
_ = future.result()
except Exception as e:
logger.error(f'Error in thread: {e}')
continue
with lock:
if has_images:
dimensions_dict = get_cropped_dimensions(dir_temp)
A = add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, os.path.join(dir_overlay, 'labels'), leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches)
else:
# TODO add empty placeholder to the image data
pass
else:
logger.info('Loading existing landmark annotations')
dir_temp = os.path.join(use_existing_landmark_detections, f'batch_{str(batch+1)}', 'labels')
dimensions_dict = get_cropped_dimensions(dir_temp)
A = add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, use_existing_landmark_detections, leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches)
# delete the temp dir
try:
shutil.rmtree(dir_temp)
except:
try:
time.sleep(5)
shutil.rmtree(dir_temp)
except:
try:
time.sleep(5)
shutil.rmtree(dir_temp)
except:
pass
torch.cuda.empty_cache()
return Project
'''def add_to_dictionary_from_txt(cfg, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp):
# dict_labels = {}
for file in os.listdir(dir_components):
file_name = str(file.split('.')[0])
file_name_parent = file_name.split('__')[0]
Project.project_data[file_name_parent][component] = {}
if file.endswith(".txt"):
with open(os.path.join(dir_components, file), "r") as f:
all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
Project.project_data[file_name_parent][component][file_name] = all_points
height = dimensions_dict[file_name][0]
width = dimensions_dict[file_name][1]
Leaf_Skeleton = LeafSkeleton(cfg, Dirs, leaf_type, all_points, height, width, dir_temp, file_name)
QC_add = Leaf_Skeleton.get_QC()'''
return Project.project_data
def add_to_dictionary_from_txt_armature(cfg, logger, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp, batch, n_batches):
dpi = cfg['leafmachine']['overlay']['overlay_dpi']
if leaf_type == 'Landmarks_Armature':
logger.info(f'Detecting landmarks armature')
pdf_path = os.path.join(Dirs.landmarks_armature_overlay_QC, ''.join(['landmarks_armature_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf']))
pdf_path_final = os.path.join(Dirs.landmarks_armature_overlay_final, ''.join(['landmarks_armature_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf']))
### FINAL
# dict_labels = {}
fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi
row, col = 0, 0
with PdfPages(pdf_path_final) as pdf:
for file in os.listdir(dir_components):
file_name = str(file.split('.')[0])
file_name_parent = file_name.split('__')[0]
# Project.project_data_list[batch][file_name_parent][component] = []
if file_name_parent in Project.project_data_list[batch]:
if file.endswith(".txt"):
with open(os.path.join(dir_components, file), "r") as f:
all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
# Project.project_data_list[batch][file_name_parent][component][file_name] = all_points
height = dimensions_dict[file_name][0]
width = dimensions_dict[file_name][1]
Armature_Skeleton = ArmatureSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name)
Project = add_armature_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, Armature_Skeleton)
final_add = cv2.cvtColor(Armature_Skeleton.get_final(), cv2.COLOR_BGR2RGB)
# Add image to the current subplot
ax = fig.add_subplot(5, 3, row * 3 + col + 1)
ax.imshow(final_add)
ax.axis('off')
col += 1
if col == 3:
col = 0
row += 1
if row == 5:
row = 0
pdf.savefig(fig) # Save the current page
fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page
else:
pass
if row != 0 or col != 0:
pdf.savefig(fig) # Save the remaining images on the last page
def add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp, batch, n_batches):
dpi = cfg['leafmachine']['overlay']['overlay_dpi']
if leaf_type == 'Landmarks_Whole_Leaves':
logger.info(f'Detecting landmarks whole leaves')
pdf_path = os.path.join(Dirs.landmarks_whole_leaves_overlay_QC, ''.join(['landmarks_whole_leaves_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf']))
pdf_path_final = os.path.join(Dirs.landmarks_whole_leaves_overlay_final, ''.join(['landmarks_whole_leaves_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf']))
elif leaf_type == 'Landmarks_Partial_Leaves':
logger.info(f'Detecting landmarks partial leaves')
pdf_path = os.path.join(Dirs.landmarks_partial_leaves_overlay_QC, ''.join(['landmarks_partial_leaves_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf']))
pdf_path_final = os.path.join(Dirs.landmarks_partial_leaves_overlay_final, ''.join(['landmarks_partial_leaves_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf']))
elif leaf_type == 'Landmarks_Armature':
logger.info(f'Detecting landmarks armature')
pdf_path = os.path.join(Dirs.landmarks_armature_overlay_QC, ''.join(['landmarks_armature_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf']))
pdf_path_final = os.path.join(Dirs.landmarks_armature_overlay_final, ''.join(['landmarks_armature_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf']))
### FINAL
# dict_labels = {}
fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi
row, col = 0, 0
with PdfPages(pdf_path_final) as pdf:
for file in os.listdir(dir_components):
file_name = str(file.split('.')[0])
file_name_parent = file_name.split('__')[0]
# Project.project_data_list[batch][file_name_parent][component] = []
if file_name_parent in Project.project_data_list[batch]:
if file.endswith(".txt"):
with open(os.path.join(dir_components, file), "r") as f:
all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
# Project.project_data_list[batch][file_name_parent][component][file_name] = all_points
height = dimensions_dict[file_name][0]
width = dimensions_dict[file_name][1]
Leaf_Skeleton = LeafSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name)
Project = add_leaf_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, Leaf_Skeleton)
final_add = cv2.cvtColor(Leaf_Skeleton.get_final(), cv2.COLOR_BGR2RGB)
# Add image to the current subplot
ax = fig.add_subplot(5, 3, row * 3 + col + 1)
ax.imshow(final_add)
ax.axis('off')
col += 1
if col == 3:
col = 0
row += 1
if row == 5:
row = 0
pdf.savefig(fig) # Save the current page
fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page
else:
pass
if row != 0 or col != 0:
pdf.savefig(fig) # Save the remaining images on the last page
### QC
'''do_save_QC_pdf = False # TODO refine this
if do_save_QC_pdf:
# dict_labels = {}
fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi
row, col = 0, 0
with PdfPages(pdf_path) as pdf:
for file in os.listdir(dir_components):
file_name = str(file.split('.')[0])
file_name_parent = file_name.split('__')[0]
if file_name_parent in Project.project_data_list[batch]:
if file.endswith(".txt"):
with open(os.path.join(dir_components, file), "r") as f:
all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f]
Project.project_data_list[batch][file_name_parent][component][file_name] = all_points
height = dimensions_dict[file_name][0]
width = dimensions_dict[file_name][1]
Leaf_Skeleton = LeafSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name)
QC_add = cv2.cvtColor(Leaf_Skeleton.get_QC(), cv2.COLOR_BGR2RGB)
# Add image to the current subplot
ax = fig.add_subplot(5, 3, row * 3 + col + 1)
ax.imshow(QC_add)
ax.axis('off')
col += 1
if col == 3:
col = 0
row += 1
if row == 5:
row = 0
pdf.savefig(fig) # Save the current page
fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page
else:
pass
if row != 0 or col != 0:
pdf.savefig(fig) # Save the remaining images on the last page'''
def add_armature_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, ARM):
if ARM.is_complete:
try:
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'complete'}, {'armature': ARM}]})
except:
Project.project_data_list[batch][file_name_parent][component] = []
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'complete'}, {'armature': ARM}]})
else:
try:
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'incomplete'}, {'armature': ARM}]})
except:
Project.project_data_list[batch][file_name_parent][component] = []
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'incomplete'}, {'armature': ARM}]})
return Project
def add_leaf_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, LS):
if LS.is_complete_leaf:
try:
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'complete_leaf'}, {'landmarks': LS}]})
except:
Project.project_data_list[batch][file_name_parent][component] = []
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'complete_leaf'}, {'landmarks': LS}]})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'complete_leaf'})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS})
elif LS.is_leaf_no_width:
try:
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'leaf_no_width'}, {'landmarks': LS}]})
except:
Project.project_data_list[batch][file_name_parent][component] = []
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'leaf_no_width'}, {'landmarks': LS}]})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'leaf_no_width'})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS})
else:
try:
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'incomplete'}, {'landmarks': LS}]})
except:
Project.project_data_list[batch][file_name_parent][component] = []
Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'incomplete'}, {'landmarks': LS}]})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'incomplete'})
# Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS})
return Project
'''
self.determine_lamina_length('final')
# Lamina tip and base
if self.has_lamina_tip:
cv2.circle(self.image_final, self.lamina_tip, radius=4, color=(0, 255, 0), thickness=2)
cv2.circle(self.image_final, self.lamina_tip, radius=2, color=(255, 255, 255), thickness=-1)
if self.has_lamina_base:
cv2.circle(self.image_final, self.lamina_base, radius=4, color=(255, 0, 0), thickness=2)
cv2.circle(self.image_final, self.lamina_base, radius=2, color=(255, 255, 255), thickness=-1)
# Apex angle
# if self.apex_center != []:
# cv2.circle(self.image_final, self.apex_center, radius=3, color=(0, 255, 0), thickness=-1)
if self.apex_left != []:
cv2.circle(self.image_final, self.apex_left, radius=3, color=(255, 0, 0), thickness=-1)
if self.apex_right != []:
cv2.circle(self.image_final, self.apex_right, radius=3, color=(0, 0, 255), thickness=-1)
# Base angle
# if self.base_center:
# cv2.circle(self.image_final, self.base_center, radius=3, color=(0, 255, 0), thickness=-1)
if self.base_left:
cv2.circle(self.image_final, self.base_left, radius=3, color=(255, 0, 0), thickness=-1)
if self.base_right:
cv2.circle(self.image_final, self.base_right, radius=3, color=(0, 0, 255), thickness=-1)
# Draw line of fit
for point in self.width_infer:
'''
def get_cropped_dimensions(dir_temp):
dimensions_dict = {}
for file_name in os.listdir(dir_temp):
if file_name.endswith(".jpg"):
img = cv2.imread(os.path.join(dir_temp, file_name))
height, width, channels = img.shape
stem = os.path.splitext(file_name)[0]
dimensions_dict[stem] = (height, width)
return dimensions_dict
def unpack_class_from_components_armature(dict_big, cls, dict_name_yolo, dict_name_location, Project):
# Get the dict that contains plant parts, find the whole leaves
for filename, value in dict_big.items():
if "Detections_Armature_Components" in value:
filtered_components = [val for val in value["Detections_Armature_Components"] if val[0] == cls]
value[dict_name_yolo] = filtered_components
for filename, value in dict_big.items():
if "Detections_Armature_Components" in value:
filtered_components = [val for val in value["Detections_Armature_Components"] if val[0] == cls]
height = value['height']
width = value['width']
converted_list = [[convert_index_to_class_armature(val[0]), int((val[1] * width) - ((val[3] * width) / 2)),
int((val[2] * height) - ((val[4] * height) / 2)),
int(val[3] * width) + int((val[1] * width) - ((val[3] * width) / 2)),
int(val[4] * height) + int((val[2] * height) - ((val[4] * height) / 2))] for val in filtered_components]
# Verify that the crops are correct
# img = Image.open(os.path.join(Project., '.'.join([filename,'jpg'])))
# for d in converted_list:
# img_crop = img.crop((d[1], d[2], d[3], d[4]))
# img_crop.show()
value[dict_name_location] = converted_list
# print(dict)
return dict_big
def unpack_class_from_components(dict_big, cls, dict_name_yolo, dict_name_location, Project):
# Get the dict that contains plant parts, find the whole leaves
for filename, value in dict_big.items():
if "Detections_Plant_Components" in value:
filtered_components = [val for val in value["Detections_Plant_Components"] if val[0] == cls]
value[dict_name_yolo] = filtered_components
for filename, value in dict_big.items():
if "Detections_Plant_Components" in value:
filtered_components = [val for val in value["Detections_Plant_Components"] if val[0] == cls]
height = value['height']
width = value['width']
converted_list = [[convert_index_to_class(val[0]), int((val[1] * width) - ((val[3] * width) / 2)),
int((val[2] * height) - ((val[4] * height) / 2)),
int(val[3] * width) + int((val[1] * width) - ((val[3] * width) / 2)),
int(val[4] * height) + int((val[2] * height) - ((val[4] * height) / 2))] for val in filtered_components]
# Verify that the crops are correct
# img = Image.open(os.path.join(Project., '.'.join([filename,'jpg'])))
# for d in converted_list:
# img_crop = img.crop((d[1], d[2], d[3], d[4]))
# img_crop.show()
value[dict_name_location] = converted_list
# print(dict)
return dict_big
def crop_images_to_bbox_armature(dict_big, cls, dict_name_cropped, dict_from, Project, Dirs, do_upscale=False, cfg=None):
dir_temp = os.path.join(Dirs.landmarks, 'TEMP_landmarks')
os.makedirs(dir_temp, exist_ok=True)
# For each image, iterate through the whole leaves, segment, report data back to dict_plant_components
for filename, value in dict_big.items():
value[dict_name_cropped] = []
if dict_from in value:
bboxes_whole_leaves = [val for val in value[dict_from] if val[0] == convert_index_to_class_armature(cls)]
if len(bboxes_whole_leaves) == 0:
m = str(''.join(['No objects for class ', convert_index_to_class_armature(0), ' were found']))
# Print_Verbose(cfg, 3, m).plain()
else:
try:
img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpg'])))
# img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpg']))) # Testing
except:
img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpeg'])))
# img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpeg']))) # Testing
for d in bboxes_whole_leaves:
# img_crop = img.crop((d[1], d[2], d[3], d[4])) # PIL
img_crop = img[d[2]:d[4], d[1]:d[3]]
loc = '-'.join([str(d[1]), str(d[2]), str(d[3]), str(d[4])])
# value[dict_name_cropped].append({crop_name: img_crop})
if do_upscale:
upscale_factor = int(cfg['leafmachine']['landmark_detector_armature']['upscale_factor'])
if cls == 0:
crop_name = '__'.join([filename,f"PRICKLE-{upscale_factor}x",loc])
height, width, _ = img_crop.shape
img_crop = cv2.resize(img_crop, ((width * upscale_factor), (height * upscale_factor)), interpolation=cv2.INTER_LANCZOS4)
else:
if cls == 0:
crop_name = '__'.join([filename,'PRICKLE',loc])
cv2.imwrite(os.path.join(dir_temp, '.'.join([crop_name,'jpg'])), img_crop)
# cv2.imshow('img_crop', img_crop)
# cv2.waitKey(0)
# img_crop.show() # PIL
return dict_big, dir_temp
def crop_images_to_bbox(dict_big, cls, dict_name_cropped, dict_from, Project, Dirs):
dir_temp = os.path.join(Dirs.landmarks, 'TEMP_landmarks')
os.makedirs(dir_temp, exist_ok=True)
# For each image, iterate through the whole leaves, segment, report data back to dict_plant_components
for filename, value in dict_big.items():
value[dict_name_cropped] = []
if dict_from in value:
bboxes_whole_leaves = [val for val in value[dict_from] if val[0] == convert_index_to_class(cls)]
if len(bboxes_whole_leaves) == 0:
m = str(''.join(['No objects for class ', convert_index_to_class(0), ' were found']))
# Print_Verbose(cfg, 3, m).plain()
else:
try:
img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpg'])))
# img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpg']))) # Testing
except:
img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpeg'])))
# img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpeg']))) # Testing
for d in bboxes_whole_leaves:
# img_crop = img.crop((d[1], d[2], d[3], d[4])) # PIL
img_crop = img[d[2]:d[4], d[1]:d[3]]
loc = '-'.join([str(d[1]), str(d[2]), str(d[3]), str(d[4])])
if cls == 0:
crop_name = '__'.join([filename,'L',loc])
elif cls == 1:
crop_name = '__'.join([filename,'PL',loc])
elif cls == 2:
crop_name = '__'.join([filename,'ARM',loc])
# value[dict_name_cropped].append({crop_name: img_crop})
cv2.imwrite(os.path.join(dir_temp, '.'.join([crop_name,'jpg'])), img_crop)
# cv2.imshow('img_crop', img_crop)
# cv2.waitKey(0)
# img_crop.show() # PIL
return dict_big, dir_temp
def convert_index_to_class(ind):
mapping = {
0: 'apex_angle',
1: 'base_angle',
2: 'lamina_base',
3: 'lamina_tip',
4: 'lamina_width',
5: 'lobe_tip',
6: 'midvein_trace',
7: 'petiole_tip',
8: 'petiole_trace',
}
return mapping.get(ind, 'Invalid class').lower()
def convert_index_to_class_armature(ind):
mapping = {
0: 'tip',
1: 'middle',
2: 'outer',
}
return mapping.get(ind, 'Invalid class').lower()
|