File size: 40,873 Bytes
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import openai
import os, sys, json, inspect, glob, tiktoken, shutil, yaml
import openpyxl
from openpyxl import Workbook, load_workbook
import google.generativeai as palm
from langchain.chat_models import AzureChatOpenAI

currentdir = os.path.dirname(os.path.abspath(
    inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.append(parentdir)

from general_utils import get_cfg_from_full_path, num_tokens_from_string
from embeddings_db import VoucherVisionEmbedding
from OCR_google_cloud_vision import detect_text, overlay_boxes_on_image
from LLM_chatGPT_3_5 import OCR_to_dict, OCR_to_dict_16k
from LLM_PaLM import OCR_to_dict_PaLM
# from LLM_Falcon import OCR_to_dict_Falcon
from prompts import PROMPT_UMICH_skeleton_all_asia, PROMPT_OCR_Organized, PROMPT_UMICH_skeleton_all_asia_GPT4, PROMPT_OCR_Organized_GPT4, PROMPT_JSON
from prompt_catalog import PromptCatalog
'''
* For the prefix_removal, the image names have 'MICH-V-' prior to the barcode, so that is used for matching
  but removed for output.
* There is also code active to replace the LLM-predicted "Catalog Number" with the correct number since it is known.
  The LLMs to usually assign the barcode to the correct field, but it's not needed since it is already known.
        - Look for ####################### Catalog Number pre-defined
'''

'''
Prior to StructuredOutputParser:
    response = openai.ChatCompletion.create(
            model=MODEL,
            temperature = 0,
            messages=[
                {"role": "system", "content": "You are a helpful assistant acting as a transcription expert and your job is to transcribe herbarium specimen labels based on OCR data and reformat it to meet Darwin Core Archive Standards into a Python dictionary based on certain rules."},
                {"role": "user", "content": prompt},
            ],
            max_tokens=2048,
        )
        # print the model's response
        return response.choices[0].message['content']
'''

class VoucherVision():

    def __init__(self, cfg, logger, dir_home, path_custom_prompts, Project, Dirs):
        self.cfg = cfg
        self.logger = logger
        self.dir_home = dir_home
        self.path_custom_prompts = path_custom_prompts
        self.Project = Project
        self.Dirs = Dirs
        self.headers = None
        self.prompt_version = None

        self.set_API_keys()
        self.setup()


    def setup(self):
        self.logger.name = f'[Transcription]'
        self.logger.info(f'Setting up OCR and LLM')

        self.db_name = self.cfg['leafmachine']['project']['embeddings_database_name']
        self.path_domain_knowledge = self.cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
        self.build_new_db = self.cfg['leafmachine']['project']['build_new_embeddings_database']

        self.continue_run_from_partial_xlsx = self.cfg['leafmachine']['project']['continue_run_from_partial_xlsx']

        self.prefix_removal = self.cfg['leafmachine']['project']['prefix_removal']
        self.suffix_removal = self.cfg['leafmachine']['project']['suffix_removal']
        self.catalog_numerical_only = self.cfg['leafmachine']['project']['catalog_numerical_only']

        self.prompt_version0 = self.cfg['leafmachine']['project']['prompt_version']
        self.use_domain_knowledge = self.cfg['leafmachine']['project']['use_domain_knowledge']

        self.catalog_name_options = ["Catalog Number", "catalog_number"]

        self.utility_headers = ["tokens_in", "tokens_out", "path_to_crop","path_to_original","path_to_content","path_to_helper",]

        self.map_prompt_versions()
        self.map_dir_labels()
        self.map_API_options()
        self.init_embeddings()
        self.init_transcription_xlsx()

        '''Logging'''
        self.logger.info(f'Transcribing dataset --- {self.dir_labels}')
        self.logger.info(f'Saving transcription batch to --- {self.path_transcription}')
        self.logger.info(f'Saving individual transcription files to --- {self.Dirs.transcription_ind}')
        self.logger.info(f'Starting transcription...')
        self.logger.info(f'     LLM MODEL --> {self.version_name}')
        self.logger.info(f'     Using Azure API --> {self.is_azure}')
        self.logger.info(f'     Model name passed to API --> {self.model_name}')
        self.logger.info(f'     API access token is found in PRIVATE_DATA.yaml --> {self.has_key}')

    def map_API_options(self):
        self.chat_version = self.cfg['leafmachine']['LLM_version']
        version_mapping = {
            'GPT 4': ('OpenAI GPT 4', False, 'GPT_4', self.has_key_openai),
            'GPT 3.5': ('OpenAI GPT 3.5', False, 'GPT_3_5', self.has_key_openai),
            'Azure GPT 3.5': ('(Azure) OpenAI GPT 3.5', True, 'Azure_GPT_3_5', self.has_key_azure_openai),
            'Azure GPT 4': ('(Azure) OpenAI GPT 4', True, 'Azure_GPT_4', self.has_key_azure_openai),
            'PaLM 2': ('Google PaLM 2', None, None, self.has_key_palm2)
        }
        if self.chat_version not in version_mapping:
            supported_LLMs = ", ".join(version_mapping.keys())
            raise Exception(f"Unsupported LLM: {self.chat_version}. Requires one of: {supported_LLMs}")

        self.version_name, self.is_azure, self.model_name, self.has_key = version_mapping[self.chat_version]

    def map_prompt_versions(self):
        self.prompt_version_map = {
            "Version 1": "prompt_v1_verbose",
            "Version 1 No Domain Knowledge": "prompt_v1_verbose_noDomainKnowledge",
            "Version 2": "prompt_v2_json_rules",
            "Version 1 PaLM 2": 'prompt_v1_palm2',
            "Version 1 PaLM 2 No Domain Knowledge": 'prompt_v1_palm2_noDomainKnowledge', 
            "Version 2 PaLM 2": 'prompt_v2_palm2',
        }
        self.prompt_version = self.prompt_version_map.get(self.prompt_version0, self.path_custom_prompts)
        self.is_predefined_prompt = self.is_in_prompt_version_map(self.prompt_version)

    def is_in_prompt_version_map(self, value):
        return value in self.prompt_version_map.values()

    def init_embeddings(self):
        if self.use_domain_knowledge:
            self.logger.info(f'*** USING DOMAIN KNOWLEDGE ***')
            self.logger.info(f'*** Initializing vector embeddings database ***')
            self.initialize_embeddings()
        else:
            self.Voucher_Vision_Embedding = None

    def map_dir_labels(self):
        if self.cfg['leafmachine']['use_RGB_label_images']:
            self.dir_labels = os.path.join(self.Dirs.save_per_annotation_class,'label')
        else:
            self.dir_labels = self.Dirs.save_original

        # Use glob to get all image paths in the directory
        self.img_paths = glob.glob(os.path.join(self.dir_labels, "*"))

    def load_rules_config(self):
        with open(self.path_custom_prompts, 'r') as stream:
            try:
                return yaml.safe_load(stream)
            except yaml.YAMLError as exc:
                print(exc)
                return None
            
    def generate_xlsx_headers(self):
        # Extract headers from the 'Dictionary' keys in the JSON template rules
        xlsx_headers = list(self.rules_config_json['rules']["Dictionary"].keys())
        xlsx_headers = xlsx_headers + self.utility_headers
        return xlsx_headers

    def init_transcription_xlsx(self):
        self.HEADERS_v1_n22 = ["Catalog Number","Genus","Species","subspecies","variety","forma","Country","State","County","Locality Name","Min Elevation","Max Elevation","Elevation Units","Verbatim Coordinates","Datum","Cultivated","Habitat","Collectors","Collector Number","Verbatim Date","Date","End Date"] 
        self.HEADERS_v2_n26 = ["catalog_number","genus","species","subspecies","variety","forma","country","state","county","locality_name","min_elevation","max_elevation","elevation_units","verbatim_coordinates","decimal_coordinates","datum","cultivated","habitat","plant_description","collectors","collector_number","determined_by","multiple_names","verbatim_date","date","end_date"]
        self.HEADERS_v1_n22 = self.HEADERS_v1_n22 + self.utility_headers
        self.HEADERS_v2_n26 = self.HEADERS_v2_n26 + self.utility_headers
        # Initialize output file
        self.path_transcription = os.path.join(self.Dirs.transcription,"transcribed.xlsx")

        if self.prompt_version in ['prompt_v2_json_rules','prompt_v2_palm2']:
            self.headers = self.HEADERS_v2_n26
            self.headers_used = 'HEADERS_v2_n26'
        
        elif self.prompt_version in ['prompt_v1_verbose', 'prompt_v1_verbose_noDomainKnowledge','prompt_v1_palm2', 'prompt_v1_palm2_noDomainKnowledge']:
            self.headers = self.HEADERS_v1_n22
            self.headers_used = 'HEADERS_v1_n22'
        
        else:
            if not self.is_predefined_prompt:
                # Load the rules configuration
                self.rules_config_json = self.load_rules_config()
                # Generate the headers from the configuration
                self.headers = self.generate_xlsx_headers()
                # Set the headers used to the dynamically generated headers
                self.headers_used = 'CUSTOM'
            else:
                # If it's a predefined prompt, raise an exception as we don't have further instructions
                raise ValueError("Predefined prompt is not handled in this context.")

        self.create_or_load_excel_with_headers(os.path.join(self.Dirs.transcription,"transcribed.xlsx"), self.headers)


    def pick_model(self, vendor, nt):
        if vendor == 'GPT_3_5':
            if nt > 6000:
                return "gpt-3.5-turbo-16k-0613", True
            else:
                return "gpt-3.5-turbo", False
        if vendor == 'GPT_4':
            return "gpt-4", False
        if vendor == 'Azure_GPT_3_5':
            return "gpt-35-turbo", False
        if vendor == 'Azure_GPT_4':
            return "gpt-4", False
           
    def create_or_load_excel_with_headers(self, file_path, headers, show_head=False):
        output_dir_names = ['Archival_Components', 'Config_File', 'Cropped_Images', 'Logs', 'Original_Images', 'Transcription']
        self.completed_specimens = []

        # Check if the file exists and it's not None
        if self.continue_run_from_partial_xlsx is not None and os.path.isfile(self.continue_run_from_partial_xlsx):
            workbook = load_workbook(filename=self.continue_run_from_partial_xlsx)
            sheet = workbook.active
            show_head=True
            # Identify the 'path_to_crop' column
            try:
                path_to_crop_col = headers.index('path_to_crop') + 1
                path_to_original_col = headers.index('path_to_original') + 1
                path_to_content_col = headers.index('path_to_content') + 1
                path_to_helper_col = headers.index('path_to_helper') + 1
                # self.completed_specimens = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
            except ValueError:
                print("'path_to_crop' not found in the header row.")

            
            path_to_crop = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
            path_to_original = list(sheet.iter_cols(min_col=path_to_original_col, max_col=path_to_original_col, values_only=True, min_row=2))
            path_to_content = list(sheet.iter_cols(min_col=path_to_content_col, max_col=path_to_content_col, values_only=True, min_row=2))
            path_to_helper = list(sheet.iter_cols(min_col=path_to_helper_col, max_col=path_to_helper_col, values_only=True, min_row=2))
            others = [path_to_crop_col, path_to_original_col, path_to_content_col, path_to_helper_col]
            jsons = [path_to_content_col, path_to_helper_col]

            for cell in path_to_crop[0]:
                old_path = cell
                new_path = file_path
                for dir_name in output_dir_names:
                    if dir_name in old_path:
                        old_path_parts = old_path.split(dir_name)
                        new_path_parts = new_path.split('Transcription')
                        updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
                        self.completed_specimens.append(os.path.basename(updated_path))
            print(f"{len(self.completed_specimens)} images are already completed")

            ### Copy the JSON files over
            for colu in jsons:
                cell = next(sheet.iter_rows(min_row=2, min_col=colu, max_col=colu))[0]
                old_path = cell.value
                new_path = file_path

                old_path_parts = old_path.split('Transcription')
                new_path_parts = new_path.split('Transcription')
                updated_path = new_path_parts[0] + 'Transcription' + old_path_parts[1]

                # Copy files
                old_dir = os.path.dirname(old_path)
                new_dir = os.path.dirname(updated_path)

                # Check if old_dir exists and it's a directory
                if os.path.exists(old_dir) and os.path.isdir(old_dir):
                    # Check if new_dir exists. If not, create it.
                    if not os.path.exists(new_dir):
                        os.makedirs(new_dir)

                    # Iterate through all files in old_dir and copy each to new_dir
                    for filename in os.listdir(old_dir):
                        shutil.copy2(os.path.join(old_dir, filename), new_dir) # copy2 preserves metadata

            ### Update the file names
            for colu in others:
                for row in sheet.iter_rows(min_row=2, min_col=colu, max_col=colu):
                    for cell in row:
                        old_path = cell.value
                        new_path = file_path
                        for dir_name in output_dir_names:
                            if dir_name in old_path:
                                old_path_parts = old_path.split(dir_name)
                                new_path_parts = new_path.split('Transcription')
                                updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
                                cell.value = updated_path
            show_head=True

                
        else:
            # Create a new workbook and select the active worksheet
            workbook = Workbook()
            sheet = workbook.active

            # Write headers in the first row
            for i, header in enumerate(headers, start=1):
                sheet.cell(row=1, column=i, value=header)
            self.completed_specimens = []
            
        # Save the workbook
        workbook.save(file_path)

        if show_head:
            print("continue_run_from_partial_xlsx:")
            for i, row in enumerate(sheet.iter_rows(values_only=True)):
                print(row)
                if i == 3:  # print the first 5 rows (0-indexed)
                    print("\n")
                    break



    def add_data_to_excel_from_response(self, path_transcription, response, filename_without_extension, path_to_crop, path_to_content, path_to_helper, nt_in, nt_out):
        wb = openpyxl.load_workbook(path_transcription)
        sheet = wb.active

        # find the next empty row
        next_row = sheet.max_row + 1

        if isinstance(response, str):
            try:
                response = json.loads(response)
            except json.JSONDecodeError:
                print(f"Failed to parse response: {response}")
                return

        # iterate over headers in the first row
        for i, header in enumerate(sheet[1], start=1):
            # check if header value is in response keys
            if (header.value in response) and (header.value not in self.catalog_name_options): ####################### Catalog Number pre-defined
                # check if the response value is a dictionary
                if isinstance(response[header.value], dict):
                    # if it is a dictionary, extract the 'value' field
                    cell_value = response[header.value].get('value', '')
                else:
                    # if it's not a dictionary, use it directly
                    cell_value = response[header.value]
                
                try:
                    # write the value to the cell
                    sheet.cell(row=next_row, column=i, value=cell_value)
                except:
                    sheet.cell(row=next_row, column=i, value=cell_value[0])

            elif header.value in self.catalog_name_options: 
                # if self.prefix_removal:
                #     filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
                # if self.suffix_removal:
                #     filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
                # if self.catalog_numerical_only:
                #     filename_without_extension = self.remove_non_numbers(filename_without_extension)
                sheet.cell(row=next_row, column=i, value=filename_without_extension)
            elif header.value == "path_to_crop":
                sheet.cell(row=next_row, column=i, value=path_to_crop)
            elif header.value == "path_to_original":
                if self.cfg['leafmachine']['use_RGB_label_images']:
                    fname = os.path.basename(path_to_crop)
                    base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
                    path_to_original = os.path.join(base, 'Original_Images', fname)
                    sheet.cell(row=next_row, column=i, value=path_to_original)
                else:
                    fname = os.path.basename(path_to_crop)
                    base = os.path.dirname(os.path.dirname(path_to_crop))
                    path_to_original = os.path.join(base, 'Original_Images', fname)
                    sheet.cell(row=next_row, column=i, value=path_to_original)
            elif header.value == "path_to_content":
                sheet.cell(row=next_row, column=i, value=path_to_content)
            elif header.value == "path_to_helper":
                sheet.cell(row=next_row, column=i, value=path_to_helper)
            elif header.value == "tokens_in":
                sheet.cell(row=next_row, column=i, value=nt_in)
            elif header.value == "tokens_out":
                sheet.cell(row=next_row, column=i, value=nt_out)
        # save the workbook
        wb.save(path_transcription)


    

    def has_API_key(self, val):
        if val != '':
            return True
        else:
            return False

    def set_API_keys(self):
        self.dir_home = os.path.dirname(os.path.dirname(__file__))
        self.path_cfg_private = os.path.join(self.dir_home, 'PRIVATE_DATA.yaml')
        self.cfg_private = get_cfg_from_full_path(self.path_cfg_private)

        self.has_key_openai = self.has_API_key(self.cfg_private['openai']['OPENAI_API_KEY'])

        self.has_key_azure_openai = self.has_API_key(self.cfg_private['openai_azure']['api_version'])
        
        self.has_key_palm2 = self.has_API_key(self.cfg_private['google_palm']['google_palm_api'])

        self.has_key_google_OCR = self.has_API_key(self.cfg_private['google_cloud']['path_json_file'])

        if self.has_key_openai:
            openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']
            os.environ["OPENAI_API_KEY"] = self.cfg_private['openai']['OPENAI_API_KEY']
            

        if self.has_key_azure_openai:
            # os.environ["OPENAI_API_KEY"] = self.cfg_private['openai_azure']['openai_api_key']
            self.llm = AzureChatOpenAI(
                deployment_name='gpt-35-turbo',
                openai_api_version=self.cfg_private['openai_azure']['api_version'],
                openai_api_key=self.cfg_private['openai_azure']['openai_api_key'],
                openai_api_base=self.cfg_private['openai_azure']['openai_api_base'],
                openai_organization=self.cfg_private['openai_azure']['openai_organization'],
                openai_api_type=self.cfg_private['openai_azure']['openai_api_type']
            )

        if self.has_key_google_OCR:
            os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = self.cfg_private['google_cloud']['path_json_file']

        if self.has_key_palm2:
            os.environ['PALM'] = self.cfg_private['google_palm']['google_palm_api']
            palm.configure(api_key=os.environ['PALM'])

        
    def initialize_embeddings(self):
        '''Loading embedding search       __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda")'''
        self.Voucher_Vision_Embedding = VoucherVisionEmbedding(self.db_name, self.path_domain_knowledge, logger=self.logger, build_new_db=self.build_new_db)

    def clean_catalog_number(self, data, filename_without_extension):
        #Cleans up the catalog number in data if it's a dict
        
        def modify_catalog_key(catalog_key, filename_without_extension, data):
            # Helper function to apply modifications on catalog number
            if catalog_key not in data:
                new_data = {catalog_key: None}
                data = {**new_data, **data}

            if self.prefix_removal:
                filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
            if self.suffix_removal:
                filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
            if self.catalog_numerical_only:
                filename_without_extension = self.remove_non_numbers(data[catalog_key])
            data[catalog_key] = filename_without_extension
            return data
        
        if isinstance(data, dict):
            if self.headers_used == 'HEADERS_v1_n22':
                return modify_catalog_key("Catalog Number", filename_without_extension, data)
            elif self.headers_used in ['HEADERS_v2_n26', 'CUSTOM']:
                return modify_catalog_key("catalog_number", filename_without_extension, data)
            else:
                raise ValueError("Invalid headers used.")
        else:
            raise TypeError("Data is not of type dict.")
        

    def write_json_to_file(self, filepath, data):
        '''Writes dictionary data to a JSON file.'''
        with open(filepath, 'w') as txt_file:
            if isinstance(data, dict):
                data = json.dumps(data, indent=4)
            txt_file.write(data)

    def create_null_json(self):
        return {}
    
    def remove_non_numbers(self, s):
        return ''.join([char for char in s if char.isdigit()])
    
    def create_null_row(self, filename_without_extension, path_to_crop, path_to_content, path_to_helper):
        json_dict = {header: '' for header in self.headers} 
        for header, value in json_dict.items():
            if header in self.catalog_name_options:
                if self.prefix_removal:
                    json_dict[header] = filename_without_extension.replace(self.prefix_removal, "")
                if self.suffix_removal:
                    json_dict[header] = filename_without_extension.replace(self.suffix_removal, "")
                if self.catalog_numerical_only:
                    json_dict[header] = self.remove_non_numbers(json_dict[header])
            elif header == "path_to_crop":
                json_dict[header] = path_to_crop
            elif header == "path_to_original":
                fname = os.path.basename(path_to_crop)
                base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
                path_to_original = os.path.join(base, 'Original_Images', fname)
                json_dict[header] = path_to_original
            elif header == "path_to_content":
                json_dict[header] = path_to_content
            elif header == "path_to_helper":
                json_dict[header] = path_to_helper
        return json_dict


    def setup_GPT(self, prompt_version, gpt):
        Catalog = PromptCatalog()
        self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')

        # if prompt_version == 'prompt_v1_verbose':
        if self.is_predefined_prompt:
            if self.use_domain_knowledge:
                # Find a similar example from the domain knowledge
                domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
                similarity= self.Voucher_Vision_Embedding.get_similarity()

                if prompt_version == 'prompt_v1_verbose':
                    prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose(OCR=self.OCR,domain_knowledge_example=domain_knowledge_example,similarity=similarity)

            else:
                if prompt_version == 'prompt_v1_verbose_noDomainKnowledge':
                    prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose_noDomainKnowledge(OCR=self.OCR)

                elif prompt_version ==  'prompt_v2_json_rules':
                    prompt, n_fields, xlsx_headers = Catalog.prompt_v2_json_rules(OCR=self.OCR)
        else:
            prompt, n_fields, xlsx_headers = Catalog.prompt_v2_custom(self.path_custom_prompts, OCR=self.OCR)
            


        nt = num_tokens_from_string(prompt, "cl100k_base")
        self.logger.info(f'Prompt token length --- {nt}')

        MODEL, use_long_form = self.pick_model(gpt, nt)
        self.logger.info(f'Waiting for {gpt} API call --- Using {MODEL}')

        return MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt

        
    # def setup_GPT(self, opt, gpt):
    #     if opt == 'dict':
    #         # Find a similar example from the domain knowledge
    #         domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
    #         similarity= self.Voucher_Vision_Embedding.get_similarity()

    #         self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')

    #         # prompt = PROMPT_UMICH_skeleton_all_asia_GPT4(self.OCR, domain_knowledge_example, similarity)
    #         prompt, n_fields, xlsx_headers = 

    #         nt = num_tokens_from_string(prompt, "cl100k_base")
    #         self.logger.info(f'Prompt token length --- {nt}')

    #         MODEL, use_long_form = self.pick_model(gpt, nt)

    #         ### Direct GPT ###
    #         self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Content')

    #         return MODEL, prompt, use_long_form
        
    #     elif opt == 'helper':
    #         prompt = PROMPT_OCR_Organized_GPT4(self.OCR)
    #         nt = num_tokens_from_string(prompt, "cl100k_base")

    #         MODEL, use_long_form = self.pick_model(gpt, nt)

    #         self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
    #         self.logger.info(f'Prompt token length --- {nt}')
    #         self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Helper')

    #         return MODEL, prompt, use_long_form


    def use_chatGPT(self, is_azure, progress_report, gpt):
        total_tokens_in = 0
        total_tokens_out = 0
        final_JSON_response = None
        if progress_report is not None:
            progress_report.set_n_batches(len(self.img_paths))
        for i, path_to_crop in enumerate(self.img_paths):
            if progress_report is not None:
                progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")

            if os.path.basename(path_to_crop) in self.completed_specimens:
                self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
            else:
                filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)

                # Use Google Vision API to get OCR
                # self.OCR = detect_text(path_to_crop) 
                self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
                self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
                self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')
                if len(self.OCR) > 0:
                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
                    self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
                    
                    self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
                    self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
                    self.overlay_image.save(jpg_file_path_OCR_helper)

                    # Setup Dict
                    MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt_in = self.setup_GPT(self.prompt_version, gpt)

                    if is_azure:
                        self.llm.deployment_name = MODEL
                    else:
                        self.llm = None

                    # Send OCR to chatGPT and return formatted dictonary
                    if use_long_form:
                        response_candidate = OCR_to_dict_16k(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version) 
                        nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
                    else:
                        response_candidate = OCR_to_dict(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version)
                        nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
                else: 
                    response_candidate = None
                    nt_out = 0

                total_tokens_in += nt_in
                total_tokens_out += nt_out

                final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
                if response_candidate is not None:
                    final_JSON_response = final_JSON_response0

                self.logger.info(f'Formatted JSON\n{final_JSON_response}')
                self.logger.info(f'Finished {MODEL} API calls\n')
        
        if progress_report is not None:
            progress_report.reset_batch(f"Batch Complete")
        try:
            final_JSON_response = json.loads(final_JSON_response.strip('```').replace('json\n', '', 1).replace('json', '', 1))
        except:
            pass
        return final_JSON_response, total_tokens_in, total_tokens_out

                    

    def use_PaLM(self, progress_report):
        total_tokens_in = 0
        total_tokens_out = 0
        final_JSON_response = None
        if progress_report is not None:
            progress_report.set_n_batches(len(self.img_paths))
        for i, path_to_crop in enumerate(self.img_paths):
            if progress_report is not None:
                progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
            if os.path.basename(path_to_crop) in self.completed_specimens:
                self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
            else:
                filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)
                
                # Use Google Vision API to get OCR
                self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
                if len(self.OCR) > 0:
                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
                    self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")
                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')

                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
                    self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
                    self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
                    
                    self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
                    self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
                    self.overlay_image.save(jpg_file_path_OCR_helper)

                    # Send OCR to chatGPT and return formatted dictonary
                    response_candidate, nt_in = OCR_to_dict_PaLM(self.logger, self.OCR, self.prompt_version, self.Voucher_Vision_Embedding)
                    nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
                    
                else:
                    response_candidate = None
                    nt_out = 0

                total_tokens_in += nt_in
                total_tokens_out += nt_out

                final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
                if response_candidate is not None:
                    final_JSON_response = final_JSON_response0
                self.logger.info(f'Formatted JSON\n{final_JSON_response}')
                self.logger.info(f'Finished PaLM 2 API calls\n')

        if progress_report is not None:
            progress_report.reset_batch(f"Batch Complete")
        return final_JSON_response, total_tokens_in, total_tokens_out


    '''
    def use_falcon(self, progress_report):
        for i, path_to_crop in enumerate(self.img_paths):
            progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
            if os.path.basename(path_to_crop) in self.completed_specimens:
                self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
            else:
                filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
                txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
                txt_file_path_helper = os.path.join(self.Dirs.transcription_ind_helper, filename_without_extension + '.json')
                self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')

                # Use Google Vision API to get OCR
                self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
                if len(self.OCR) > 0:
                    self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")

                    # Send OCR to Falcon and return formatted dictionary
                    response = OCR_to_dict_Falcon(self.logger, self.OCR, self.Voucher_Vision_Embedding)
                    # response_helper = OCR_to_helper_Falcon(self.logger, OCR) # Assuming you have a similar helper function for Falcon
                    response_helper = None
                    
                    self.logger.info(f'Finished Falcon API calls\n')
                else:
                    response = None

                if (response is not None) and (response_helper is not None):
                    # Save transcriptions to json files
                    self.write_json_to_file(txt_file_path, response)
                    # self.write_json_to_file(txt_file_path_helper, response_helper)

                    # add to the xlsx file
                    self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, txt_file_path_helper)
        progress_report.reset_batch()
    '''

    def generate_paths(self, path_to_crop, i):
        filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
        txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
        txt_file_path_OCR = os.path.join(self.Dirs.transcription_ind_OCR, filename_without_extension + '.json')
        txt_file_path_OCR_bounds = os.path.join(self.Dirs.transcription_ind_OCR_bounds, filename_without_extension + '.json')
        jpg_file_path_OCR_helper = os.path.join(self.Dirs.transcription_ind_OCR_helper, filename_without_extension + '.jpg')

        self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')

        return filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper

    def save_json_and_xlsx(self, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out):
        if response is None:
            response = self.create_null_json()
            self.write_json_to_file(txt_file_path, response)

            # Then add the null info to the spreadsheet
            response_null = self.create_null_row(filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper)
            self.add_data_to_excel_from_response(self.path_transcription, response_null, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in=0, nt_out=0)
        
        ### Set completed JSON
        else:
            response = self.clean_catalog_number(response, filename_without_extension)
            self.write_json_to_file(txt_file_path, response)
            # add to the xlsx file
            self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
        return response
    
    def process_specimen_batch(self, progress_report):
        try:
            if self.has_key:
                if self.model_name:
                    final_json_response, total_tokens_in, total_tokens_out = self.use_chatGPT(self.is_azure, progress_report, self.model_name)
                else:
                    final_json_response, total_tokens_in, total_tokens_out = self.use_PaLM(progress_report)
                return final_json_response, total_tokens_in, total_tokens_out
            else:
                self.logger.info(f'No API key found for {self.version_name}')
                raise Exception(f"No API key found for {self.version_name}")
        except:
            if progress_report is not None:
                progress_report.reset_batch(f"Batch Failed")
            self.logger.error("LLM call failed. Ending batch. process_specimen_batch()")
            for handler in self.logger.handlers[:]:
                handler.close()
                self.logger.removeHandler(handler)
            raise

    def process_specimen_batch_OCR_test(self, path_to_crop):
        for img_filename in os.listdir(path_to_crop):
            img_path = os.path.join(path_to_crop, img_filename)
        self.OCR, self.bounds, self.text_to_box_mapping = detect_text(img_path)



def space_saver(cfg, Dirs, logger):
    dir_out = cfg['leafmachine']['project']['dir_output']
    run_name = Dirs.run_name

    path_project = os.path.join(dir_out, run_name)

    if cfg['leafmachine']['project']['delete_temps_keep_VVE']:
        logger.name = '[DELETE TEMP FILES]'
        logger.info("Deleting temporary files. Keeping files required for VoucherVisionEditor.")
        delete_dirs = ['Archival_Components', 'Config_File']
        for d in delete_dirs:
            path_delete = os.path.join(path_project, d)
            if os.path.exists(path_delete):
                shutil.rmtree(path_delete)

    elif cfg['leafmachine']['project']['delete_all_temps']:
        logger.name = '[DELETE TEMP FILES]'
        logger.info("Deleting ALL temporary files!")
        delete_dirs = ['Archival_Components', 'Config_File', 'Original_Images', 'Cropped_Images']
        for d in delete_dirs:
            path_delete = os.path.join(path_project, d)
            if os.path.exists(path_delete):
                shutil.rmtree(path_delete)

        # Delete the transctiption folder, but keep the xlsx
        transcription_path = os.path.join(path_project, 'Transcription')
        if os.path.exists(transcription_path):
            for item in os.listdir(transcription_path):
                item_path = os.path.join(transcription_path, item)
                if os.path.isdir(item_path):  # if the item is a directory
                    if os.path.exists(item_path):
                        shutil.rmtree(item_path)  # delete the directory