File size: 9,905 Bytes
e91ac58
 
 
 
 
 
 
 
ae215ea
e91ac58
 
 
aedd7d9
e91ac58
 
 
 
 
 
 
 
 
 
 
567930d
ae215ea
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
 
e91ac58
 
 
 
 
567930d
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
 
e91ac58
567930d
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
567930d
 
 
ae215ea
9d06861
ae215ea
e91ac58
 
 
9d06861
e91ac58
9d06861
e91ac58
9d06861
567930d
 
e91ac58
9d06861
 
e91ac58
 
 
 
 
567930d
 
e91ac58
ae215ea
9d06861
567930d
 
e91ac58
 
9d06861
e91ac58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import json, torch, transformers, gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline

from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template

'''
Local Pipielines:
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines
'''

class LocalMistralHandler: 
    RETRY_DELAY = 2  # Wait 2 seconds before retrying
    MAX_RETRIES = 5  # Maximum number of retries
    STARTING_TEMP = 0.1
    TOKENIZER_NAME = None
    VENDOR = 'mistral'
    MAX_GPU_MONITORING_INTERVAL = 2  # seconds

    def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation):
        self.cfg = cfg
        self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
        self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
        self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']

        self.logger = logger
        self.has_GPU = torch.cuda.is_available()
        self.monitor = SystemLoadMonitor(logger)

        self.model_name = model_name
        self.model_id = f"mistralai/{self.model_name}"
        name_parts = self.model_name.split('-')

        self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json")


        self.JSON_dict_structure = JSON_dict_structure
        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp 

        system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user."
        template = """
            <s>[INST]{}[/INST]</s>

            [INST]{}[/INST]
            """.format(system_prompt, "{query}")

        # Create a prompt from the template so we can use it with Langchain
        self.prompt = PromptTemplate(template=template, input_variables=["query"])

        # Set up a parser
        self.parser = JsonOutputParser()

        self._set_config()


    # def _clear_VRAM(self):
    #     # Clear CUDA cache if it's being used
    #     if self.has_GPU:
    #         self.local_model = None
    #         self.local_model_pipeline = None
    #         del self.local_model
    #         del self.local_model_pipeline
    #         gc.collect()  # Explicitly invoke garbage collector
    #         torch.cuda.empty_cache()
    #     else:
    #         self.local_model_pipeline = None
    #         self.local_model = None
    #         del self.local_model_pipeline
    #         del self.local_model
    #         gc.collect()  # Explicitly invoke garbage collector


    def _set_config(self):
        # self._clear_VRAM()
        self.config = {'max_new_tokens': 1024,
                'temperature': self.starting_temp,
                'seed': 2023,
                'top_p': 1,
                'top_k': 40,
                'do_sample': True,
                'n_ctx':4096,

                # Activate 4-bit precision base model loading
                'use_4bit': True,
                # Compute dtype for 4-bit base models
                'bnb_4bit_compute_dtype': "float16",
                # Quantization type (fp4 or nf4)
                'bnb_4bit_quant_type': "nf4",
                # Activate nested quantization for 4-bit base models (double quantization)
                'use_nested_quant': False,
                }
        
        compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') )

        self.bnb_config = BitsAndBytesConfig(
            load_in_4bit=self.config.get('use_4bit'),
            bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'),
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_use_double_quant=self.config.get('use_nested_quant'),
        )

        # Check GPU compatibility with bfloat16
        if compute_dtype == torch.float16 and self.config.get('use_4bit'):
            major, _ = torch.cuda.get_device_capability()
            if major >= 8:
                # print("=" * 80)
                # print("Your GPU supports bfloat16: accelerate training with bf16=True")
                # print("=" * 80)
                self.b_float_opt =  torch.bfloat16

            else:
                self.b_float_opt =  torch.float16
        self._build_model_chain_parser()
    

    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        if self.json_report:
            self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.adjust_temp += self.temp_increment

    
    def _reset_config(self):
        if self.json_report:
            self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.adjust_temp = self.starting_temp
    

    def _build_model_chain_parser(self):
        self.local_model_pipeline = transformers.pipeline("text-generation", 
                    model=self.model_id,
                    max_new_tokens=self.config.get('max_new_tokens'),
                    top_k=self.config.get('top_k'),
                    top_p=self.config.get('top_p'),
                    do_sample=self.config.get('do_sample'),
                    model_kwargs={"torch_dtype": self.b_float_opt, 
                                "load_in_4bit": True, 
                                "quantization_config": self.bnb_config})
        self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
        # Set up the retry parser with the runnable
        self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
        # Create an llm chain with LLM and prompt
        self.chain = self.prompt | self.local_model  # LCEL


    def call_llm_local_MistralAI(self, prompt_template, json_report, paths):
        _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths
        self.json_report = json_report
        if self.json_report:
            self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()
        
        nt_in = 0
        nt_out = 0

        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            try:
                # Dynamically set the temperature for this specific request
                model_kwargs = {"temperature": self.adjust_temp}
                
                # Invoke the chain to generate prompt text
                results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})

                # Use retry_parser to parse the response with retry logic
                output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)

                if output is None:
                    self.logger.error(f'Failed to extract JSON from:\n{results}')
                    self._adjust_config()
                    del results

                else:
                    nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)

                    output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                    
                    if output is None:
                        self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}')
                        self._adjust_config()
                    else:
                        self.monitor.stop_inference_timer() # Starts tool timer too
                        
                        if self.json_report:
                            self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
                        output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki)

                        save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt)

                        self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")

                        usage_report = self.monitor.stop_monitoring_report_usage()    

                        if self.adjust_temp != self.starting_temp:            
                            self._reset_config()

                        if self.json_report:
                            self.json_report.set_text(text_main=f'LLM call successful')
                        del results
                        return output, nt_in, nt_out, WFO_record, GEO_record, usage_report

            except Exception as e:
                self.logger.error(f'{e}')
                self._adjust_config()           
                
        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        if self.json_report:
            self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')

        self.monitor.stop_inference_timer() # Starts tool timer too
        usage_report = self.monitor.stop_monitoring_report_usage()                
        if self.json_report:
            self.json_report.set_text(text_main=f'LLM call failed')

        self._reset_config()
        return None, nt_in, nt_out, None, None, usage_report