File size: 81,552 Bytes
87c3140
5717b13
87c3140
 
 
 
 
93fd830
0bec306
87c3140
 
93fd830
87c3140
5efd4b8
87c3140
 
 
 
 
 
5b7117f
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b769563
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff6cbfc
 
 
 
 
49fb854
 
 
 
87c3140
ff6cbfc
 
 
1f88809
5efd4b8
ff6cbfc
 
87c3140
 
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
 
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bc00d
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4616c
904c317
 
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4616c
904c317
 
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
5b17165
c11017d
 
 
 
 
 
87c3140
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
c11017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86548c
 
 
 
 
0bec306
 
 
ab9dab7
0bec306
 
 
 
 
 
ab9dab7
 
 
 
 
 
 
 
0bec306
 
 
ab9dab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bec306
ab9dab7
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fd830
 
 
 
 
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fd830
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
93fd830
 
 
 
87c3140
 
 
93fd830
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d4eec7
87c3140
 
 
8d4eec7
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
e86548c
5b7117f
 
8d4eec7
e86548c
 
8d4eec7
 
ff6cbfc
8d4eec7
87c3140
5b7117f
 
 
e86548c
8d4eec7
 
 
87c3140
 
 
 
 
 
 
e86548c
dcf04c1
87c3140
8d4eec7
 
ff6cbfc
 
 
5efd4b8
ff6cbfc
 
 
5efd4b8
ff6cbfc
49fb854
 
 
5efd4b8
8d4eec7
1f88809
 
550800a
0bec306
 
 
ff6cbfc
87c3140
 
 
 
 
 
 
 
e9f4039
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cda274f
87c3140
 
 
 
 
 
 
448a637
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448a637
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
5bd4a83
87c3140
 
 
5b17165
 
87c3140
5731488
 
945eeae
93fd830
 
 
 
87c3140
 
 
 
 
 
93fd830
 
8d4eec7
 
93fd830
87c3140
93fd830
5b17165
93fd830
87c3140
55035d6
c11017d
 
87c3140
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
import streamlit as st
import yaml, os, json, random, time, re, shutil, io
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import numpy as np
from itertools import chain
from PIL import Image
from io import BytesIO
import base64
import pandas as pd
from typing import Union
from google.oauth2 import service_account
from streamlit_extras.let_it_rain import rain
from streamlit_image_select import image_select
from vouchervision.LeafMachine2_Config_Builder import write_config_file
from vouchervision.VoucherVision_Config_Builder import build_VV_config, run_demo_tests_GPT, run_demo_tests_Palm , TestOptionsGPT, TestOptionsPalm, check_if_usable, run_api_tests
from vouchervision.vouchervision_main import voucher_vision, voucher_vision_OCR_test
from vouchervision.general_utils import test_GPU, get_cfg_from_full_path, summarize_expense_report, create_google_ocr_yaml_config, validate_dir

PROMPTS_THAT_NEED_DOMAIN_KNOWLEDGE = ["Version 1","Version 1 PaLM 2"]
LLM_VERSIONS = ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"]
COLORS_EXPENSE_REPORT = {
        'GPT_4': '#8fff66',    # Bright Green
        'GPT_3_5': '#006400',  # Dark Green
        'PALM2': '#66a8ff'     # blue
    }

class ProgressReport:
    def __init__(self, overall_bar, batch_bar, text_overall, text_batch):
        self.overall_bar = overall_bar
        self.batch_bar = batch_bar
        self.text_overall = text_overall
        self.text_batch = text_batch
        self.current_overall_step = 0
        self.total_overall_steps = 20  # number of major steps in machine function
        self.current_batch = 0
        self.total_batches = 20

    def update_overall(self, step_name=""):
        self.current_overall_step += 1
        self.overall_bar.progress(self.current_overall_step / self.total_overall_steps)
        self.text_overall.text(step_name)

    def update_batch(self, step_name=""):
        self.current_batch += 1
        self.batch_bar.progress(self.current_batch / self.total_batches)
        self.text_batch.text(step_name)

    def set_n_batches(self, n_batches):
        self.total_batches = n_batches

    def set_n_overall(self, total_overall_steps):
        self.total_overall_steps = total_overall_steps

    def reset_batch(self, step_name):
        self.current_batch = 0
        self.batch_bar.progress(0)
        self.text_batch.text(step_name)
    def reset_overall(self, step_name):
        self.current_overall_step = 0
        self.overall_bar.progress(0)
        self.text_overall.text(step_name)
    
    def get_n_images(self):
        return self.n_images
    def get_n_overall(self):
        return self.total_overall_steps

def does_private_file_exist():
    dir_home = os.path.dirname(os.path.dirname(__file__))
    path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
    return os.path.exists(path_cfg_private)

def setup_streamlit_config(dir_home):
    # Define the directory path and filename
    dir_path = os.path.join(dir_home, ".streamlit")
    file_path = os.path.join(dir_path, "config.toml")

    # Check if directory exists, if not create it
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    
    # Create or modify the file with the provided content
    config_content = f"""
    [theme]
    base = "dark"
    primaryColor = "#00ff00"

    [server]
    enableStaticServing = false
    runOnSave = true
    port = 8524
    maxUploadSize = 5000
    """

    with open(file_path, "w") as f:
        f.write(config_content.strip())

def display_scrollable_results(JSON_results, test_results, OPT2, OPT3):
    """
    Display the results from JSON_results in a scrollable container.
    """
    # Initialize the container
    con_results = st.empty()
    with con_results.container():
        
        # Start the custom container for all the results
        results_html = """<div class='scrollable-results-container'>"""
        
        for idx, (test_name, _) in enumerate(sorted(test_results.items())):
            _, ind_opt1, ind_opt2, ind_opt3 = test_name.split('__')
            opt2_readable = "Use LeafMachine2" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2"
            opt3_readable = f"{OPT3[int(ind_opt3.split('-')[1])]}"

            if JSON_results[idx] is None:
                results_html += f"<p>None</p>"
            else:
                formatted_json = json.dumps(JSON_results[idx], indent=4)
                results_html += f"<pre>[{opt2_readable}] + [{opt3_readable}]<br/>{formatted_json}</pre>"
        
        # End the custom container
        results_html += """</div>"""

        # The CSS to make this container scrollable
        css = """
        <style>
            .scrollable-results-container {
                overflow-y: auto;
                height: 600px;
                width: 100%;
                white-space: pre-wrap;  # To wrap the content
                font-family: monospace;  # To give the JSON a code-like appearance
            }
        </style>
        """

        # Apply the CSS and then the results
        st.markdown(css, unsafe_allow_html=True)
        st.markdown(results_html, unsafe_allow_html=True)

def display_test_results(test_results, JSON_results, llm_version):
    if llm_version == 'gpt':
        OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
    elif llm_version == 'palm':
        OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
    else:
        raise

    widths = [1] * (len(OPT1) + 2) + [2]
    columns = st.columns(widths)

    with columns[0]:
        st.write("LeafMachine2")
    with columns[1]:
        st.write("Prompt")
    with columns[len(OPT1) + 2]:
        st.write("Scroll to See Last Transcription in Each Test")

    already_written = set()

    for test_name, result in sorted(test_results.items()):
        _, ind_opt1, _, _ = test_name.split('__')
        option_value = OPT1[int(ind_opt1.split('-')[1])]

        if option_value not in already_written:
            with columns[int(ind_opt1.split('-')[1]) + 2]:
                st.write(option_value)
            already_written.add(option_value)

    printed_options = set()

    with columns[-1]:
        display_scrollable_results(JSON_results, test_results, OPT2, OPT3)

    # Close the custom container
    st.write('</div>', unsafe_allow_html=True)


    for idx, (test_name, result) in enumerate(sorted(test_results.items())):
        _, ind_opt1, ind_opt2, ind_opt3 = test_name.split('__')
        opt2_readable = "Use LeafMachine2" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2"
        opt3_readable = f"{OPT3[int(ind_opt3.split('-')[1])]}"

        if (opt2_readable, opt3_readable) not in printed_options:
            with columns[0]:
                st.info(f"{opt2_readable}")
                st.write('---')
            with columns[1]:
                st.info(f"{opt3_readable}")
                st.write('---')
            printed_options.add((opt2_readable, opt3_readable))

        with columns[int(ind_opt1.split('-')[1]) + 2]:
            if result:
                st.success(f"Test Passed")
            else:
                st.error(f"Test Failed")
            st.write('---')
    
    # success_count = sum(1 for result in test_results.values() if result)
    # failure_count = len(test_results) - success_count
    # proportional_rain("🥇", success_count, "💔", failure_count, font_size=72, falling_speed=5, animation_length="infinite")
    rain_emojis(test_results)

def add_emoji_delay():
    time.sleep(0.3)

def rain_emojis(test_results):
    # test_results = {
    #     'test1': True,   # Test passed
    #     'test2': True,   # Test passed
    #     'test3': True,   # Test passed
    #     'test4': False,  # Test failed
    #     'test5': False,  # Test failed
    #     'test6': False,  # Test failed
    #     'test7': False,  # Test failed
    #     'test8': False,  # Test failed
    #     'test9': False,  # Test failed
    #     'test10': False,  # Test failed
    # }
    success_emojis = ["🥇", "🏆", "🍾", "🙌"]
    failure_emojis = ["💔", "😭"]

    success_count = sum(1 for result in test_results.values() if result)
    failure_count = len(test_results) - success_count

    chosen_emoji = random.choice(success_emojis)
    for _ in range(success_count):
        rain(
            emoji=chosen_emoji,
            font_size=72,
            falling_speed=4,
            animation_length=2,
        )
        add_emoji_delay()

    chosen_emoji = random.choice(failure_emojis)
    for _ in range(failure_count):
        rain(
            emoji=chosen_emoji,
            font_size=72,
            falling_speed=5,
            animation_length=1,
        )
        add_emoji_delay()

def get_prompt_versions(LLM_version):
    yaml_files = [f for f in os.listdir(os.path.join(st.session_state.dir_home, 'custom_prompts')) if f.endswith('.yaml')]

    if LLM_version in ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5"]:
        versions = ["Version 1", "Version 1 No Domain Knowledge", "Version 2"]
        return (versions + yaml_files, "Version 2")
    elif LLM_version in ["PaLM 2",]:
        versions = ["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"]
        return (versions + yaml_files, "Version 2 PaLM 2")
    else:
        # Handle other cases or raise an error
        return (yaml_files, None)

def get_private_file():
    dir_home = os.path.dirname(os.path.dirname(__file__))
    path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
    return get_cfg_from_full_path(path_cfg_private)

def create_space_saver():
    st.subheader("Space Saving Options")
    col_ss_1, col_ss_2 = st.columns([2,2])
    with col_ss_1:
        st.write("Several folders are created and populated with data during the VoucherVision transcription process.")
        st.write("Below are several options that will allow you to automatically delete temporary files that you may not need for everyday operations.")
        st.write("VoucherVision creates the following folders. Folders marked with a :star: are required if you want to use VoucherVisionEditor for quality control.")
        st.write("`../[Run Name]/Archival_Components`")
        st.write("`../[Run Name]/Config_File`")
        st.write("`../[Run Name]/Cropped_Images` :star:")
        st.write("`../[Run Name]/Logs`")
        st.write("`../[Run Name]/Original_Images` :star:")
        st.write("`../[Run Name]/Transcription` :star:")
    with col_ss_2:
        st.session_state.config['leafmachine']['project']['delete_temps_keep_VVE'] = st.checkbox("Delete Temporary Files (KEEP files required for VoucherVisionEditor)", st.session_state.config['leafmachine']['project'].get('delete_temps_keep_VVE', False))
        st.session_state.config['leafmachine']['project']['delete_all_temps'] = st.checkbox("Keep only the final transcription file", st.session_state.config['leafmachine']['project'].get('delete_all_temps', False),help="*WARNING:* This limits your ability to do quality assurance. This will delete all folders created by VoucherVision, leaving only the `transcription.xlsx` file.")

def save_uploaded_file(directory, img_file):
    if not os.path.exists(directory):
        os.makedirs(directory)
    # Assuming the uploaded file is an image
    with Image.open(img_file) as image:
        full_path = os.path.join(directory, img_file.name)
        image.save(full_path, "JPEG")
    # Return the full path of the saved image
    return full_path

def delete_directory(dir_path):
    try:
        shutil.rmtree(dir_path)
        st.session_state['input_list'] = []
        st.success(f"Deleted previously uploaded images, making room for new images: {dir_path}")
    except OSError as e:
        st.error(f"Error: {dir_path} : {e.strerror}")


# def create_private_file():
#     st.session_state.proceed_to_main = False
#     st.title("VoucherVision")
#     col_private, _ = st.columns([12, 2])

#     openai_api_key = None
#     azure_openai_api_version = None
#     azure_openai_api_key = None
#     azure_openai_api_base = None
#     azure_openai_organization = None
#     azure_openai_api_type = None
#     google_vision = None
#     google_palm = None

#     # Fetch the environment variables or set to empty if not found
#     env_variables = {
#         'OPENAI_API_KEY': os.getenv('OPENAI_API_KEY'),
#         'AZURE_API_VERSION': os.getenv('AZURE_API_VERSION'),
#         'AZURE_API_KEY': os.getenv('AZURE_API_KEY'),
#         'AZURE_API_BASE': os.getenv('AZURE_API_BASE'),
#         'AZURE_ORGANIZATION': os.getenv('AZURE_ORGANIZATION'),
#         'AZURE_API_TYPE': os.getenv('AZURE_API_TYPE'),
#         'AZURE_DEPLOYMENT_NAME': os.getenv('AZURE_DEPLOYMENT_NAME'),
#         'GOOGLE_APPLICATION_CREDENTIALS': os.getenv('GOOGLE_APPLICATION_CREDENTIALS'),
#         'PALM_API_KEY': os.getenv('PALM_API_KEY')
#     }

#     # Check if all environment variables are set
#     all_env_set = all(value is not None for value in env_variables.values())

#     with col_private:
#         # Your existing UI code for showing the forms goes here
#         st.header("Set API keys")
#         st.info("***Note:*** There is a known bug with tabs in Streamlit. If you update an input field it may take you back to the 'Project Settings' tab. Changes that you made are saved, it's just an annoying glitch. We are aware of this issue and will fix it as soon as we can.")
#         st.warning("To commit changes to API keys you must press the 'Set API Keys' button at the bottom of the page.")
#         st.write("Before using VoucherVision you must set your API keys. All keys are stored locally on your computer and are never made public.")
#         st.write("API keys are stored in `../VoucherVision/PRIVATE_DATA.yaml`.")
#         st.write("Deleting this file will allow you to reset API keys. Alternatively, you can edit the keys in the user interface.")
#         st.write("Leave keys blank if you do not intend to use that service.")
        

#         if os.getenv('GOOGLE_APPLICATION_CREDENTIALS') is None:
#             st.write("---")
#             st.subheader("Google Vision  (*Required*)")
#             st.markdown("VoucherVision currently uses [Google Vision API](https://cloud.google.com/vision/docs/ocr) for OCR. Generating an API key for this is more involved than the others. [Please carefully follow the instructions outlined here to create and setup your account.](https://cloud.google.com/vision/docs/setup) ")
#             st.markdown("""
#             Once your account is created, [visit this page](https://console.cloud.google.com) and create a project. Then follow these instructions:

#             - **Select your Project**: If you have multiple projects, ensure you select the one where you've enabled the Vision API.
#             - **Open the Navigation Menu**: Click on the hamburger menu (three horizontal lines) in the top left corner.
#             - **Go to IAM & Admin**: In the navigation pane, hover over "IAM & Admin" and then click on "Service accounts."
#             - **Locate Your Service Account**: Find the service account for which you wish to download the JSON key. If you haven't created a service account yet, you'll need to do so by clicking the "CREATE SERVICE ACCOUNT" button at the top.
#             - **Download the JSON Key**:
#                 - Click on the three dots (actions menu) on the right side of your service account name.
#                 - Select "Manage keys."
#                 - In the pop-up window, click on the "ADD KEY" button and select "JSON."
#                 - The JSON key file will automatically be downloaded to your computer.
#             - **Store Safely**: This file contains sensitive data that can be used to authenticate and bill your Google Cloud account. Never commit it to public repositories or expose it in any way. Always keep it safe and secure.
#             """)
#             with st.container():
#                 c_in_ocr, c_button_ocr = st.columns([10,2])
#                 with c_in_ocr:
#                     google_vision = st.text_input(label = 'Full path to Google Cloud JSON API key file', value = '',
#                                                     placeholder = 'e.g. copy contents of file application_default_credentials.json',
#                                                     help ="This API Key is in the form of a JSON file. Please save the JSON file in a safe directory. DO NOT store the JSON key inside of the VoucherVision directory.",
#                                                     type='password',key='924857298734590283750932809238')
#                     st.secrets["db_username"]
#                 with c_button_ocr:
#                     st.empty()
                
#             with st.container():
#                 with c_button_ocr:
#                     st.write("##")
#                     st.button("Test OCR", on_click=test_API, args=['google_vision',c_in_ocr,openai_api_key,azure_openai_api_version,azure_openai_api_key,
#                                                                         azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm])


#         if os.getenv('OPENAI_API_KEY') is None:
#             st.write("---")
#             st.subheader("OpenAI")
#             st.markdown("API key for first-party OpenAI API. Create an account with OpenAI [here](https://platform.openai.com/signup), then create an API key [here](https://platform.openai.com/account/api-keys).")
#             with st.container():
#                 c_in_openai, c_button_openai = st.columns([10,2])
#                 with c_in_openai:
#                     openai_api_key = st.text_input("openai_api_key", os.environ.get('OPENAI_API_KEY', ''),
#                                                     help='The actual API key. Likely to be a string of 2 character, a dash, and then a 48-character string: sk-XXXXXXXX...',
#                                                     placeholder = 'e.g. sk-XXXXXXXX...',
#                                                     type='password')
#                 with c_button_openai:
#                     st.empty()
#             with st.container():
#                 with c_button_openai:
#                     st.write("##")
#                     st.button("Test OpenAI", on_click=test_API, args=['openai',c_in_openai,openai_api_key,azure_openai_api_version,azure_openai_api_key,
#                                                                         azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm])
            


#         if os.getenv('AZURE_API_KEY') is None:
#             st.write("---")
#             st.subheader("OpenAI - Azure")
#             st.markdown("This version OpenAI relies on Azure servers directly as is intended for private enterprise instances of OpenAI's services, such as [UM-GPT](https://its.umich.edu/computing/ai). Administrators will provide you with the following information.")
#             azure_openai_api_version = st.text_input("azure_openai_api_version", os.environ.get('AZURE_API_VERSION', ''),
#                                                     help='API Version e.g. "2023-05-15"',
#                                                     placeholder = 'e.g. 2023-05-15',
#                                                     type='password')
#             azure_openai_api_key = st.text_input("azure_openai_api_key", os.environ.get('AZURE_API_KEY', ''),
#                                                     help='The actual API key. Likely to be a 32-character string',
#                                                     placeholder = 'e.g. 12333333333333333333333333333332',
#                                                     type='password')
#             azure_openai_api_base = st.text_input("azure_openai_api_base", os.environ.get('AZURE_API_BASE', ''),
#                                                     help='The base url for the API e.g. "https://api.umgpt.umich.edu/azure-openai-api"',
#                                                     placeholder = 'e.g. https://api.umgpt.umich.edu/azure-openai-api',
#                                                     type='password')
#             azure_openai_organization = st.text_input("azure_openai_organization", os.environ.get('AZURE_ORGANIZATION', ''),
#                                                     help='Your organization code. Likely a short string',
#                                                     placeholder = 'e.g. 123456',
#                                                     type='password')
#             azure_openai_api_type = st.text_input("azure_openai_api_type", os.environ.get('AZURE_API_TYPE', ''),
#                                                     help='The API type. Typically "azure"',
#                                                     placeholder = 'e.g. azure',
#                                                     type='password')
#             with st.container():
#                 c_in_azure, c_button_azure = st.columns([10,2])
#                 with c_button_azure:
#                     st.empty()
#             with st.container():
#                 with c_button_azure:
#                     st.write("##")
#                     st.button("Test Azure OpenAI", on_click=test_API, args=['azure_openai',c_in_azure,openai_api_key,azure_openai_api_version,azure_openai_api_key,
#                                                                         azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm])
                


#         if os.getenv('PALM_API_KEY') is None:
#             st.write("---")
#             st.subheader("Google PaLM 2")
#             st.markdown('Follow these [instructions](https://developers.generativeai.google/tutorials/setup) to generate an API key for PaLM 2. You may need to also activate an account with [MakerSuite](https://makersuite.google.com/app/apikey) and enable "early access."')
#             with st.container():
#                 c_in_palm, c_button_palm = st.columns([10,2])
#                 with c_in_palm:
#                     google_palm = st.text_input("Google PaLM 2 API Key", os.environ.get('PALM_API_KEY', ''),
#                                                     help='The MakerSuite API key e.g. a 32-character string',
#                                                     placeholder='e.g. SATgthsykuE64FgrrrrEervr3S4455t_geyDeGq',
#                                                     type='password')
#             with st.container():
#                 with c_button_palm:
#                     st.write("##")
#                     st.button("Test PaLM 2", on_click=test_API, args=['palm',c_in_palm,openai_api_key,azure_openai_api_version,azure_openai_api_key,
#                                                                         azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm])

#         st.button("Set API Keys",type='primary', on_click=set_API_keys, args=[openai_api_key,azure_openai_api_version,azure_openai_api_key,
#                                                                     azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm])

#         # # UI form for entering environment variables if not all are set
#         # with st.form("env_variables"):
#         #     for var, value in env_variables.items():
#         #         env_variables[var] = st.text_input(f"Enter {var}", value or "")
#         #     submitted = st.form_submit_button("Submit")
#         #     if submitted:
#         #         # Assuming the environment variables should be set for the session
#         #         for var, value in env_variables.items():
#         #             os.environ[var] = value
#         #         st.success("Environment variables updated. Please restart your app.")
#         if st.button('Proceed to VoucherVision'):
#             st.session_state.proceed_to_private = False
#             st.session_state.proceed_to_main = True

# def set_API_keys(openai_api_key, azure_openai_api_version, azure_openai_api_key, azure_openai_api_base, azure_openai_organization, azure_openai_api_type, google_vision, google_palm):
#     # Set the environment variable if the key is not None or an empty string
#     if openai_api_key:
#         os.environ['OPENAI_API_KEY'] = openai_api_key
#     if azure_openai_api_version:
#         os.environ['AZURE_API_VERSION'] = azure_openai_api_version
#     if azure_openai_api_key:
#         os.environ['AZURE_API_KEY'] = azure_openai_api_key
#     if azure_openai_api_base:
#         os.environ['AZURE_API_BASE'] = azure_openai_api_base
#     if azure_openai_organization:
#         os.environ['AZURE_ORGANIZATION'] = azure_openai_organization
#     if azure_openai_api_type:
#         os.environ['AZURE_API_TYPE'] = azure_openai_api_type
#     if google_vision:
#         os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = google_vision
#     if google_palm:
#         os.environ['GOOGLE_PALM_API'] = google_palm

#     st.success("API keys set successfully!")

    
# def test_API(api, message_loc,openai_api_key,azure_openai_api_version,azure_openai_api_key, azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm):
#     # Save the API keys
#     # save_changes_to_API_keys(openai_api_key,azure_openai_api_version,azure_openai_api_key,azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm)
#     set_API_keys(openai_api_key, azure_openai_api_version, azure_openai_api_key,
#                  azure_openai_api_base, azure_openai_organization, azure_openai_api_type,
#                  google_vision, google_palm)
    
#     with st.spinner('Performing validation checks...'):
#         if api == 'google_vision':
#             print("*** Google Vision OCR API Key ***")
#             try:
#                 demo_config_path = os.path.join(st.session_state.dir_home,'demo','validation_configs','google_vision_ocr_test.yaml')
#                 demo_images_path = os.path.join(st.session_state.dir_home, 'demo', 'demo_images')
#                 demo_out_path = os.path.join(st.session_state.dir_home, 'demo', 'demo_output','run_name')
#                 create_google_ocr_yaml_config(demo_config_path, demo_images_path, demo_out_path)
#                 voucher_vision_OCR_test(demo_config_path, st.session_state.dir_home, None, demo_images_path)
#                 with message_loc:
#                     st.success("Google Vision OCR API Key Valid :white_check_mark:")
#                 return True
#             except Exception as e:
#                 with message_loc:
#                     st.error(f"Google Vision OCR API Key Failed! {e}")
#                 return False
            
#         elif api == 'openai':
#             print("*** OpenAI API Key ***")
#             try:
#                 if run_api_tests('openai'):
#                     with message_loc:
#                         st.success("OpenAI API Key Valid :white_check_mark:")
#                 else:
#                     with message_loc:
#                         st.error("OpenAI API Key Failed:exclamation:")
#                     return False
#             except Exception as e:
#                 with message_loc:
#                     st.error(f"OpenAI API Key Failed:exclamation: {e}")

#         elif api == 'azure_openai':
#             print("*** Azure OpenAI API Key ***")
#             try:
#                 if run_api_tests('azure_openai'):
#                     with message_loc:
#                         st.success("Azure OpenAI API Key Valid :white_check_mark:")
#                 else:
#                     with message_loc:
#                         st.error(f"Azure OpenAI API Key Failed:exclamation:")
#                     return False
#             except Exception as e:
#                 with message_loc:
#                     st.error(f"Azure OpenAI API Key Failed:exclamation: {e}")
#         elif api == 'palm':
#             print("*** Google PaLM 2 API Key ***")
#             try:
#                 if run_api_tests('palm'):
#                     with message_loc:
#                         st.success("Google PaLM 2 API Key Valid :white_check_mark:")
#                 else:
#                     with message_loc:
#                         st.error("Google PaLM 2 API Key Failed:exclamation:")
#                     return False
#             except Exception as e:
#                 with message_loc:
#                     st.error(f"Google PaLM 2 API Key Failed:exclamation: {e}")
def image_to_base64(img):
    buffered = BytesIO()
    img.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode()

def display_image_gallery():
    """
    Display an image gallery from st.session_state['input_list'] in a scrollable container.
    Each image will have a maximum width of 500 pixels.
    """
    # Initialize the container
    con_image = st.empty()
    with con_image.container():
        # Loop through each image in the input list
        for image_path in st.session_state['input_list']:
            # Convert the image to base64 (assuming you have this utility function)
            img_file = Image.open(image_path).thumbnail((120, 120), Image.Resampling.LANCZOS)
            base64_image = image_to_base64(img_file)

            # Embed the image with the determined width in the custom div
            img_html = f"""
            <div style='display: flex; flex-wrap: wrap; overflow-y: auto; max-height: 400px;'>
                <img src='data:image/jpeg;base64,{base64_image}' alt='Image' style='max-width: 100%; height: auto;'>
            </div>
            """

            # Apply the image with HTML
            st.markdown(img_html, unsafe_allow_html=True)

        # The CSS to make the images display inline and be responsive
        css = """
        <style>
            @media (max-width: 120px) {
                .scrollable-image-container img {
                    max-width: 100%;
                    height: 400px;
                    height: auto;
                }
            }
        </style>
        """
        # Apply the CSS
        st.markdown(css, unsafe_allow_html=True)  
# def display_image_gallery():
#     """
#     Display an image gallery from st.session_state['input_list'] in a scrollable container.
#     Each image will be downsampled to 120px on the long side.
#     The container will be as wide as its containing Streamlit column and no more than 400px tall.
#     """
#     # Initialize the container
#     con_image = st.empty()
#     with con_image.container():
#         # Start the gallery HTML with a div that will create a vertical scrolling effect
#         gallery_html = "<div style='display: flex; flex-wrap: wrap; overflow-y: auto; max-height: 400px;'>"

#         # Loop through each image in the input list
#         for image_path in st.session_state['input_list']:
#             # Open the image
#             img = Image.open(image_path)
#             # Downsample the image to 120px on the long side
#             img.thumbnail((120, 120), Image.Resampling.LANCZOS)
            
#             # Convert the image to base64 for HTML embedding
#             buffered = io.BytesIO()
#             img.save(buffered, format="JPEG")
#             img_str = base64.b64encode(buffered.getvalue()).decode()

#             # Add each image to the gallery HTML
#             gallery_html += f"""
#             <div style='padding: 5px; flex: 1 0 auto;'>
#                 <img src='data:image/jpeg;base64,{img_str}' alt='Image' style='max-height: 120px; width: auto;'>
#             </div>
#             """

#         # Close the gallery container div
#         gallery_html += "</div>"

#         # Apply the gallery HTML
#         st.markdown(gallery_html, unsafe_allow_html=True)

def save_changes_to_API_keys(cfg_private,openai_api_key,azure_openai_api_version,azure_openai_api_key,
                             azure_openai_api_base,azure_openai_organization,azure_openai_api_type,google_vision,google_palm):
    # Update the configuration dictionary with the new values
    cfg_private['openai']['OPENAI_API_KEY'] = openai_api_key 

    cfg_private['openai_azure']['api_version'] = azure_openai_api_version
    cfg_private['openai_azure']['openai_api_key'] = azure_openai_api_key
    cfg_private['openai_azure']['openai_api_base'] = azure_openai_api_base
    cfg_private['openai_azure']['openai_organization'] = azure_openai_organization
    cfg_private['openai_azure']['openai_api_type'] = azure_openai_api_type

    cfg_private['google_cloud']['path_json_file'] = google_vision

    cfg_private['google_palm']['google_palm_api'] = google_palm
    # Call the function to write the updated configuration to the YAML file
    write_config_file(cfg_private, st.session_state.dir_home, filename="PRIVATE_DATA.yaml")
    st.session_state.private_file = does_private_file_exist()

# Function to load a YAML file and update session_state
def load_prompt_yaml(filename):
    with open(filename, 'r') as file:
        st.session_state['prompt_info'] = yaml.safe_load(file)
        st.session_state['instructions'] = st.session_state['prompt_info'].get('instructions', st.session_state['default_instructions']) 
        st.session_state['json_formatting_instructions'] = st.session_state['prompt_info'].get('json_formatting_instructions', st.session_state['default_json_formatting_instructions'] )
        st.session_state['rules'] = st.session_state['prompt_info'].get('rules', {})
        st.session_state['mapping'] = st.session_state['prompt_info'].get('mapping', {})
        st.session_state['LLM'] = st.session_state['prompt_info'].get('LLM', 'gpt')

        # Placeholder:
        st.session_state['assigned_columns'] = list(chain.from_iterable(st.session_state['mapping'].values())) 

def save_prompt_yaml(filename):
    yaml_content = {
        'instructions': st.session_state['instructions'],
        'json_formatting_instructions': st.session_state['json_formatting_instructions'],
        'rules': st.session_state['rules'],
        'mapping': st.session_state['mapping'],
        'LLM': st.session_state['LLM']
    }
    
    dir_prompt = os.path.join(st.session_state.dir_home, 'custom_prompts')
    filepath = os.path.join(dir_prompt, f"{filename}.yaml")

    with open(filepath, 'w') as file:
        yaml.safe_dump(yaml_content, file)

    st.success(f"Prompt saved as '{filename}.yaml'.")

def check_unique_mapping_assignments():
    if len(st.session_state['assigned_columns']) != len(set(st.session_state['assigned_columns'])):
        st.error("Each column name must be assigned to only one category.")
        return False
    else:
        st.success("Mapping confirmed.")
        return True

def check_prompt_yaml_filename(fname):
    # Check if the filename only contains letters, numbers, underscores, and dashes
    pattern = r'^[\w-]+$'
    
    # The \w matches any alphanumeric character and is equivalent to the character class [a-zA-Z0-9_].
    # The hyphen - is literally matched.

    if re.match(pattern, fname):
        return True
    else:
        return False

def create_download_button(zip_filepath):
    with open(zip_filepath, 'rb') as f:
        bytes_io = BytesIO(f.read())
    st.download_button(
        label="Download Results",
        data=bytes_io,
        file_name=os.path.basename(zip_filepath),
        mime='application/zip'
    )

def btn_load_prompt(selected_yaml_file, dir_prompt):
    if selected_yaml_file:
        yaml_file_path = os.path.join(dir_prompt, selected_yaml_file)
        load_prompt_yaml(yaml_file_path)
    elif not selected_yaml_file:
        # Directly assigning default values since no file is selected
        st.session_state['prompt_info'] = {}
        st.session_state['instructions'] = st.session_state['default_instructions']
        st.session_state['json_formatting_instructions'] = st.session_state['default_json_formatting_instructions'] 
        st.session_state['rules'] = {}
        st.session_state['LLM'] = 'gpt'
        
        st.session_state['assigned_columns'] = []

        st.session_state['prompt_info'] = {
            'instructions': st.session_state['instructions'],
            'json_formatting_instructions': st.session_state['json_formatting_instructions'],
            'rules': st.session_state['rules'],
            'mapping': st.session_state['mapping'],
            'LLM': st.session_state['LLM']
        }

def build_LLM_prompt_config():
    st.session_state['assigned_columns'] = []
    st.session_state['default_instructions'] = """1. Refactor the unstructured OCR text into a dictionary based on the JSON structure outlined below.
2. You should map the unstructured OCR text to the appropriate JSON key and then populate the field based on its rules.
3. Some JSON key fields are permitted to remain empty if the corresponding information is not found in the unstructured OCR text.
4. Ignore any information in the OCR text that doesn't fit into the defined JSON structure.
5. Duplicate dictionary fields are not allowed.
6. Ensure that all JSON keys are in lowercase.
7. Ensure that new JSON field values follow sentence case capitalization.
8. Ensure all key-value pairs in the JSON dictionary strictly adhere to the format and data types specified in the template.
9. Ensure the output JSON string is valid JSON format. It should not have trailing commas or unquoted keys.
10. Only return a JSON dictionary represented as a string. You should not explain your answer."""
    st.session_state['default_json_formatting_instructions'] = """The next section of instructions outlines how to format the JSON dictionary. The keys are the same as those of the final formatted JSON object.
For each key there is a format requirement that specifies how to transcribe the information for that key. 
The possible formatting options are:
1. "verbatim transcription" - field is populated with verbatim text from the unformatted OCR.
2. "spell check transcription" - field is populated with spelling corrected text from the unformatted OCR.
3. "boolean yes no" - field is populated with only yes or no.
4. "boolean 1 0" - field is populated with only 1 or 0.
5. "integer" - field is populated with only an integer.
6. "[list]" - field is populated from one of the values in the list.
7. "yyyy-mm-dd" - field is populated with a date in the format year-month-day.
The desired null value is also given. Populate the field with the null value of the information for that key is not present in the unformatted OCR text."""
    
    # Start building the Streamlit app
    col_prompt_main_left, ___, col_prompt_main_right = st.columns([6,1,3])

    
    with col_prompt_main_left:
        
        st.title("Custom LLM Prompt Builder")
        st.subheader('About')
        st.write("This form allows you to craft a prompt for your specific task.")
        st.subheader('How it works')
        st.write("1. Edit this page until you are happy with your instructions. We recommend looking at the basic structure, writing down your prompt inforamtion in a Word document so that it does not randomly disappear, and then copying and pasting that info into this form once your whole prompt structure is defined.")
        st.write("2. After you enter all of your prompt instructions, click 'Save' and give your file a name.")
        st.write("3. This file will be saved as a yaml configuration file in the `..VoucherVision/custom_prompts` folder.")
        st.write("4. When you go back the main VoucherVision page you will now see your custom prompt available in the 'Prompt Version' dropdown menu.")
        st.write("5. Select your custom prompt. Note, your prompt will only be available for the LLM that you set when filling out the form below.")


        dir_prompt = os.path.join(st.session_state.dir_home, 'custom_prompts')
        yaml_files = [f for f in os.listdir(dir_prompt) if f.endswith('.yaml')]
        col_load_text, col_load_btn = st.columns([8,2])
        with col_load_text:
        # Dropdown for selecting a YAML file
            selected_yaml_file = st.selectbox('Select a prompt YAML file to load:', [''] + yaml_files)
        with col_load_btn:
            st.write('##')
            # Button to load the selected prompt
            st.button('Load Prompt', on_click=btn_load_prompt, args=[selected_yaml_file, dir_prompt])
                


        # Define the options for the dropdown
        llm_options = ['gpt', 'palm']
        # Create the dropdown and set the value to session_state['LLM']
        st.session_state['LLM'] = st.selectbox('Set LLM:', llm_options, index=llm_options.index(st.session_state.get('LLM', 'gpt')))

        

        # Instructions Section
        st.header("Instructions")
        st.write("These are the general instructions that guide the LLM through the transcription task. We recommend using the default instructions unless you have a specific reason to change them.")
        
        st.session_state['instructions'] = st.text_area("Enter instructions:", value=st.session_state['default_instructions'].strip(), height=350, disabled=True)

        st.write('---')

        # Column Instructions Section
        st.header("JSON Formatting Instructions")
        st.write("The following section tells the LLM how we want to structure the JSON dictionary. We do not recommend changing this section because it would likely result in unstable and inconsistent behavior.")
        st.session_state['json_formatting_instructions'] = st.text_area("Enter column instructions:", value=st.session_state['default_json_formatting_instructions'], height=350, disabled=True)





        st.write('---')
        col_left, col_right = st.columns([6,4])
        with col_left:
            st.subheader('Add/Edit Columns')
            
            # Initialize rules in session state if not already present
            if 'rules' not in st.session_state or not st.session_state['rules']:
                st.session_state['rules']['Dictionary'] = {
                    "catalog_number": {
                        "format": "verbatim transcription",
                        "null_value": "",
                        "description": "The barcode identifier, typically a number with at least 6 digits, but fewer than 30 digits."
                    }
                }
                st.session_state['rules']['SpeciesName'] = {
                    "taxonomy": ["Genus_species"]
                }

            # Layout for adding a new column name
            # col_text, col_textbtn = st.columns([8, 2])
            # with col_text:
            new_column_name = st.text_input("Enter a new column name:")
            # with col_textbtn:
            # st.write('##')
            if st.button("Add New Column") and new_column_name:
                if new_column_name not in st.session_state['rules']['Dictionary']:
                    st.session_state['rules']['Dictionary'][new_column_name] = {"format": "", "null_value": "", "description": ""}
                    st.success(f"New column '{new_column_name}' added. Now you can edit its properties.")
                else:
                    st.error("Column name already exists. Please enter a unique column name.")

            # Get columns excluding the protected "catalog_number"
            st.write('#')
            editable_columns = [col for col in st.session_state['rules']['Dictionary'] if col != "catalog_number"]
            column_name = st.selectbox("Select a column to edit:", [""] + editable_columns)

            # Handle rules editing
            current_rule = st.session_state['rules']['Dictionary'].get(column_name, {
                "format": "",
                "null_value": "",
                "description": ""
            })

            if 'selected_column' not in st.session_state:
                st.session_state['selected_column'] = column_name

            


            # Form for input fields
            with st.form(key='rule_form'):
                format_options = ["verbatim transcription", "spell check transcription", "boolean yes no", "boolean 1 0", "integer", "[list]", "yyyy-mm-dd"]
                current_rule["format"] = st.selectbox("Format:", format_options, index=format_options.index(current_rule["format"]) if current_rule["format"] else 0)
                current_rule["null_value"] = st.text_input("Null value:", value=current_rule["null_value"])
                current_rule["description"] = st.text_area("Description:", value=current_rule["description"])
                commit_button = st.form_submit_button("Commit Column")

            default_rule = {
                "format": format_options[0],  # default format
                "null_value": "",  # default null value
                "description": "",  # default description
            }
            if st.session_state['selected_column'] != column_name:
                # Column has changed. Update the session_state selected column.
                st.session_state['selected_column'] = column_name
                # Reset the current rule to the default for this new column, or a blank rule if not set.
                current_rule = st.session_state['rules']['Dictionary'].get(column_name, default_rule.copy())

            # Handle commit action
            if commit_button and column_name:
                # Commit the rules to the session state.
                st.session_state['rules']['Dictionary'][column_name] = current_rule.copy()
                st.success(f"Column '{column_name}' added/updated in rules.")

                # Force the form to reset by clearing the fields from the session state
                st.session_state.pop('selected_column', None)  # Clear the selected column to force reset

                # st.session_state['rules'][column_name] = current_rule
                # st.success(f"Column '{column_name}' added/updated in rules.")

                # # Reset current_rule to default values for the next input
                # current_rule["format"] = default_rule["format"]
                # current_rule["null_value"] = default_rule["null_value"]
                # current_rule["description"] = default_rule["description"]

                # # To ensure that the form fields are reset, we can clear them from the session state
                # for key in current_rule.keys():
                #     st.session_state[key] = default_rule[key]

            # Layout for removing an existing column
            # del_col, del_colbtn = st.columns([8, 2])
            # with del_col:
            delete_column_name = st.selectbox("Select a column to delete:", [""] + editable_columns, key='delete_column')
            # with del_colbtn:
            # st.write('##')
            if st.button("Delete Column") and delete_column_name:
                del st.session_state['rules'][delete_column_name]
                st.success(f"Column '{delete_column_name}' removed from rules.")


            

        with col_right:
            # Display the current state of the JSON rules
            st.subheader('Formatted Columns')
            st.json(st.session_state['rules']['Dictionary'])

            # st.subheader('All Prompt Info')
            # st.json(st.session_state['prompt_info'])


        st.write('---')


        col_left_mapping, col_right_mapping = st.columns([6,4])
        with col_left_mapping:
            st.header("Mapping")
            st.write("Assign each column name to a single category.")
            st.session_state['refresh_mapping'] = False

            # Dynamically create a list of all column names that can be assigned
            # This assumes that the column names are the keys in the dictionary under 'rules'
            all_column_names = list(st.session_state['rules']['Dictionary'].keys())

            categories = ['TAXONOMY', 'GEOGRAPHY', 'LOCALITY', 'COLLECTING', 'MISCELLANEOUS']
            if ('mapping' not in st.session_state) or (st.session_state['mapping'] == {}):
                st.session_state['mapping'] = {category: [] for category in categories}
            for category in categories:
                # Filter out the already assigned columns
                available_columns = [col for col in all_column_names if col not in st.session_state['assigned_columns'] or col in st.session_state['mapping'].get(category, [])]

                # Ensure the current mapping is a subset of the available options
                current_mapping = [col for col in st.session_state['mapping'].get(category, []) if col in available_columns]

                # Provide a safe default if the current mapping is empty or contains invalid options
                safe_default = current_mapping if all(col in available_columns for col in current_mapping) else []

                # Create a multi-select widget for the category with a safe default
                selected_columns = st.multiselect(
                    f"Select columns for {category}:",
                    available_columns,
                    default=safe_default,
                    key=f"mapping_{category}"
                )
                # Update the assigned_columns based on the selections
                for col in current_mapping:
                    if col not in selected_columns and col in st.session_state['assigned_columns']:
                        st.session_state['assigned_columns'].remove(col)
                        st.session_state['refresh_mapping'] = True

                for col in selected_columns:
                    if col not in st.session_state['assigned_columns']:
                        st.session_state['assigned_columns'].append(col)
                        st.session_state['refresh_mapping'] = True

                # Update the mapping in session state when there's a change
                st.session_state['mapping'][category] = selected_columns
            if st.session_state['refresh_mapping']:
                st.session_state['refresh_mapping'] = False

        # Button to confirm and save the mapping configuration
        if st.button('Confirm Mapping'):
            if check_unique_mapping_assignments():
                # Proceed with further actions since the mapping is confirmed and unique
                pass

        with col_right_mapping:
            # Display the current state of the JSON rules
            st.subheader('Formatted Column Maps')
            st.json(st.session_state['mapping'])


        col_left_save, col_right_save = st.columns([6,4])
        with col_left_save:
            # Input for new file name
            new_filename = st.text_input("Enter filename to save your prompt as a configuration YAML:",placeholder='my_prompt_name')
            # Button to save the new YAML file
            if st.button('Save YAML', type='primary'):
                if new_filename:
                    if check_unique_mapping_assignments():
                        if check_prompt_yaml_filename(new_filename):
                            save_prompt_yaml(new_filename)
                        else:
                            st.error("File name can only contain letters, numbers, underscores, and dashes. Cannot contain spaces.")
                    else:
                        st.error("Mapping contains an error. Make sure that each column is assigned to only ***one*** category.")
                else:
                    st.error("Please enter a filename.")
        
            if st.button('Exit'):
                st.session_state.proceed_to_build_llm_prompt = False
                st.session_state.proceed_to_main = True
                st.rerun()
    with col_prompt_main_right:
        st.subheader('All Prompt Components')
        st.session_state['prompt_info'] = {
            'instructions': st.session_state['instructions'],
            'json_formatting_instructions': st.session_state['json_formatting_instructions'],
            'rules': st.session_state['rules'],
            'mapping': st.session_state['mapping'],
            'LLM': st.session_state['LLM']
        }
        st.json(st.session_state['prompt_info'])
   
def save_yaml(content, filename="rules_config.yaml"):
    with open(filename, 'w') as file:
        yaml.dump(content, file)

def show_header_welcome():
    st.session_state.logo_path = os.path.join(st.session_state.dir_home, 'img','logo.png')
    st.session_state.logo = Image.open(st.session_state.logo_path)
    st.image(st.session_state.logo, width=250)

def content_header():
    col_run_1, col_run_2, col_run_3 = st.columns([4,2,2])
    col_test = st.container()

    st.write("")
    st.write("")
    st.write("")
    st.write("")
    st.subheader("Overall Progress")
    col_run_info_1 = st.columns([1])[0]
    st.write("")
    st.write("")
    st.write("")
    st.write("")
    st.header("Configuration Settings")

    with col_run_info_1:
        # Progress
        # Progress
        # st.subheader('Project')
        # bar = st.progress(0)
        # new_text = st.empty()  # Placeholder for current step name
        # progress_report = ProgressReportVV(bar, new_text, n_images=10)

        # Progress
        overall_progress_bar = st.progress(0)
        text_overall = st.empty()  # Placeholder for current step name
        st.subheader('Transcription Progress')
        batch_progress_bar = st.progress(0)
        text_batch = st.empty()  # Placeholder for current step name
        progress_report = ProgressReport(overall_progress_bar, batch_progress_bar, text_overall, text_batch)
        st.info("***Note:*** There is a known bug with tabs in Streamlit. If you update an input field it may take you back to the 'Project Settings' tab. Changes that you made are saved, it's just an annoying glitch. We are aware of this issue and will fix it as soon as we can.")
        st.write("If you use VoucherVision frequently, you can change the default values that are auto-populated in the form below. In a text editor or IDE, edit the first few rows in the file `../VoucherVision/vouchervision/VoucherVision_Config_Builder.py`")
        

    with col_run_1:
        show_header_welcome()
        st.subheader('Run VoucherVision')
        if check_if_usable():
            if st.button("Start Processing", type='primary'):
            
                # First, write the config file.
                write_config_file(st.session_state.config, st.session_state.dir_home, filename="VoucherVision.yaml")

                path_custom_prompts = os.path.join(st.session_state.dir_home,'custom_prompts',st.session_state.config['leafmachine']['project']['prompt_version'])
                # Call the machine function.
                last_JSON_response, total_cost, st.session_state['zip_filepath'] = voucher_vision(None, st.session_state.dir_home, path_custom_prompts, None, progress_report,path_api_cost=os.path.join(st.session_state.dir_home,'api_cost','api_cost.yaml'))
                
                if total_cost:
                    st.success(f":money_with_wings: This run cost :heavy_dollar_sign:{total_cost:.4f}")
                
                # Format the JSON string for display.
                if last_JSON_response is None:
                    st.markdown(f"Last JSON object in the batch: NONE")
                else:
                    try:
                        formatted_json = json.dumps(json.loads(last_JSON_response), indent=4)
                    except:
                        formatted_json = json.dumps(last_JSON_response, indent=4)
                    st.markdown(f"Last JSON object in the batch:\n```\n{formatted_json}\n```")
                    st.balloons()
            
            if st.session_state['zip_filepath']:
                create_download_button(st.session_state['zip_filepath'])


        else:
            st.button("Start Processing", type='primary', disabled=True)
            # st.error(":heavy_exclamation_mark: Required API keys not set. Please visit the 'API Keys' tab and set the Google Vision OCR API key and at least one LLM key.")
            st.error(":heavy_exclamation_mark: Required API keys not set. Please set the API keys as 'Secrets' for your Hugging Face Space. Visit the 'Settings' tab at the top of the page.")

    with col_run_2:
        st.subheader('Run Tests', help="")
        st.write('We include a single image for testing. If you want to test all of the available prompts and LLMs on a different set of images, copy your images into `../VoucherVision/demo/demo_images`.')
        if st.button("Test GPT"):
            progress_report.set_n_overall(TestOptionsGPT.get_length())
            test_results, JSON_results = run_demo_tests_GPT(progress_report)
            with col_test:
                display_test_results(test_results, JSON_results, 'gpt')
            st.balloons()

        if st.button("Test PaLM2"):
            progress_report.set_n_overall(TestOptionsPalm.get_length())
            test_results, JSON_results = run_demo_tests_Palm(progress_report)
            with col_test:
                display_test_results(test_results, JSON_results, 'palm')
            st.balloons()

    with col_run_3:
        st.subheader('Check GPU')
        if st.button("GPU"):
            success, info = test_GPU()

            if success:
                st.balloons()
                for message in info:
                    st.success(message)
            else:
                for message in info:
                    st.error(message)

def content_tab_settings():
    col_project_1, col_project_2, col_project_3 = st.columns([2,2,2])

    st.write("---")
    st.header('Input Images')
    st.write('Upload a batch of images using the uploader below. These images will be store temporarily on this server. Each time you upload new images the ***previously uploaded images will be deleted***. You can also clear these cached images by pressing the "Clear Staged Images" button.')
    
    col_local_1, col_local_2 = st.columns([2,6])              

    # st.write("---")
    # st.header('Modules')
    # col_m1, col_m2 = st.columns(2)

    st.write("---")
    st.header('Cropped Components')    
    col_cropped_1, col_cropped_2 = st.columns([4,4])        

    os.path.join(st.session_state.dir_home, )
    ### Project
    with col_project_1:
        st.subheader('Run name')
        st.session_state.config['leafmachine']['project']['run_name'] = st.text_input("Run name", st.session_state.config['leafmachine']['project'].get('run_name', ''),
                                                                                      label_visibility='collapsed')
        # st.session_state.config['leafmachine']['project']['dir_output'] = st.text_input("Output directory", st.session_state.config['leafmachine']['project'].get('dir_output', ''))
        st.write("Run name will be the name of the final zipped folder.")

    ### LLM Version
    with col_project_2:
        st.session_state.config['leafmachine']['project']['dir_images_local'] = st.session_state['dir_uploaded_images'] #st.text_input("Input images directory", st.session_state.config['leafmachine']['project'].get('dir_images_local', ''))
        # st.session_state.config['leafmachine']['project']['continue_run_from_partial_xlsx'] = st.text_input("Continue run from partially completed project XLSX", st.session_state.config['leafmachine']['project'].get('continue_run_from_partial_xlsx', ''), disabled=True)
        st.subheader('LLM Version')
        st.session_state.config['leafmachine']['LLM_version'] = st.selectbox("LLM version", LLM_VERSIONS, 
                                                                             index=LLM_VERSIONS.index(st.session_state.config['leafmachine'].get('LLM_version', 'Azure GPT 4')),
                                                                             label_visibility='collapsed')
        st.markdown("""***Note:*** GPT-4 is significantly more expensive than GPT-3.5  """)
    
    ### Prompt Version
    with col_project_3:
        st.subheader('Prompt Version')
        versions, default_version = get_prompt_versions(st.session_state.config['leafmachine']['LLM_version'])

        if versions:
            selected_version = st.session_state.config['leafmachine']['project'].get('prompt_version', default_version)
            if selected_version not in versions:
                selected_version = default_version
            st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", versions, index=versions.index(selected_version),label_visibility='collapsed')
        st.markdown("Several prompts are provided. Visit the 'Prompt Builder' tab to upload your own prompt. If you would like to make your prompt available to others or have the prompt in the dropdown by default, [please submit the yaml through this form.]()")

    ### Input Images Local
    with col_local_1:
        st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
        uploaded_files = st.file_uploader("Upload Images", type=['jpg', 'jpeg'], accept_multiple_files=True)
        if uploaded_files:
            # Clear input image gallery and input list
            delete_directory(st.session_state['dir_uploaded_images'])
            st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
            validate_dir(st.session_state['dir_uploaded_images'])
            # Process the new iamges
            for uploaded_file in uploaded_files:
                file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
                st.session_state['input_list'].append(file_path)
                print(uploaded_file.name)

    with col_local_2:
        if st.session_state['input_list']:
            st.subheader('Image Gallery')
            # selected_img = image_select("Uploaded Images Ready for Transcription", st.session_state['input_list'], use_container_width=False)
            # st.image(st.session_state['input_list'])
            display_image_gallery()
            # st.button("Clear Staged Images",on_click=delete_directory, args=[st.session_state['dir_uploaded_images']])
        
    with col_cropped_1:
        default_crops = st.session_state.config['leafmachine']['cropped_components'].get('save_cropped_annotations', ['leaf_whole'])
        st.write("Prior to transcription, use LeafMachine2 to crop all labels from input images to create label collages for each specimen image. (Requires GPU)")
        st.session_state.config['leafmachine']['use_RGB_label_images'] = st.checkbox("Use LeafMachine2 label collage for transcriptions", st.session_state.config['leafmachine'].get('use_RGB_label_images', False))

        st.session_state.config['leafmachine']['cropped_components']['save_cropped_annotations'] = st.multiselect("Components to crop",  
                ['ruler', 'barcode','label', 'colorcard','map','envelope','photo','attached_item','weights',
                'leaf_whole', 'leaf_partial', 'leaflet', 'seed_fruit_one', 'seed_fruit_many', 'flower_one', 'flower_many', 'bud','specimen','roots','wood'],default=default_crops)
        
        st.subheader('Create OCR Overlay Image')
        st.write('This will plot bounding boxes around all text that Google Vision was able to detect. If there are no boxes around text, then the OCR failed, so that missing text will not be seen by the LLM when it is creating the JSON object. The created image will be viewable in the VoucherVisionEditor.')
        st.session_state.config['leafmachine']['do_create_OCR_helper_image'] = st.checkbox("Create image showing an overlay of the OCR detections", st.session_state.config['leafmachine'].get('do_create_OCR_helper_image', False))
    
    with col_cropped_2:
        ba = os.path.join(st.session_state.dir_home,'demo', 'ba','ba2.png')
        image = Image.open(ba)
        st.image(image, caption='LeafMachine2 Collage', output_format = "PNG")

def content_tab_component():
    st.header('Archival Components')
    ACD_version = st.selectbox("Archival Component Detector (ACD) Version", ["Version 2.1", "Version 2.2"])
    
    ACD_confidence_default = int(st.session_state.config['leafmachine']['archival_component_detector']['minimum_confidence_threshold'] * 100)
    ACD_confidence = st.number_input("ACD Confidence Threshold (%)", min_value=0, max_value=100,value=ACD_confidence_default)
    st.session_state.config['leafmachine']['archival_component_detector']['minimum_confidence_threshold'] = float(ACD_confidence/100)

    st.session_state.config['leafmachine']['archival_component_detector']['do_save_prediction_overlay_images'] = st.checkbox("Save Archival Prediction Overlay Images", st.session_state.config['leafmachine']['archival_component_detector'].get('do_save_prediction_overlay_images', True))
    
    st.session_state.config['leafmachine']['archival_component_detector']['ignore_objects_for_overlay'] = st.multiselect("Hide Archival Components in Prediction Overlay Images",  
                ['ruler', 'barcode','label', 'colorcard','map','envelope','photo','attached_item','weights',],
                default=[])

    # Depending on the selected version, set the configuration
    if ACD_version == "Version 2.1":
        st.session_state.config['leafmachine']['archival_component_detector']['detector_type'] = 'Archival_Detector'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_version'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_iteration'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_weights'] = 'best.pt'
    elif ACD_version == "Version 2.2": #TODO update this to version 2.2
        st.session_state.config['leafmachine']['archival_component_detector']['detector_type'] = 'Archival_Detector'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_version'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_iteration'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_weights'] = 'best.pt'


def content_tab_processing():
    st.header('Processing Options')
    col_processing_1, col_processing_2 = st.columns([2,2,])
    with col_processing_1:
        st.subheader('Compute Options')
        st.session_state.config['leafmachine']['project']['num_workers'] = st.number_input("Number of CPU workers", value=st.session_state.config['leafmachine']['project'].get('num_workers', 1), disabled=True)
        st.session_state.config['leafmachine']['project']['batch_size'] = st.number_input("Batch size", value=st.session_state.config['leafmachine']['project'].get('batch_size', 500), help='Sets the batch size for the LeafMachine2 cropping. If computer RAM is filled, lower this value to ~100.')
    with col_processing_2:
        st.subheader('Misc')
        st.session_state.config['leafmachine']['project']['prefix_removal'] = st.text_input("Remove prefix from catalog number", st.session_state.config['leafmachine']['project'].get('prefix_removal', ''))
        st.session_state.config['leafmachine']['project']['suffix_removal'] = st.text_input("Remove suffix from catalog number", st.session_state.config['leafmachine']['project'].get('suffix_removal', ''))
        st.session_state.config['leafmachine']['project']['catalog_numerical_only'] = st.checkbox("Require 'Catalog Number' to be numerical only", st.session_state.config['leafmachine']['project'].get('catalog_numerical_only', True))
    
    ### Logging and Image Validation - col_v1
    st.header('Logging and Image Validation')    
    col_v1, col_v2 = st.columns(2)
    with col_v1:
        st.session_state.config['leafmachine']['do']['check_for_illegal_filenames'] = st.checkbox("Check for illegal filenames", st.session_state.config['leafmachine']['do'].get('check_for_illegal_filenames', True))
        st.session_state.config['leafmachine']['do']['check_for_corrupt_images_make_vertical'] = st.checkbox("Check for corrupt images", st.session_state.config['leafmachine']['do'].get('check_for_corrupt_images_make_vertical', True))
        
        st.session_state.config['leafmachine']['print']['verbose'] = st.checkbox("Print verbose", st.session_state.config['leafmachine']['print'].get('verbose', True))
        st.session_state.config['leafmachine']['print']['optional_warnings'] = st.checkbox("Show optional warnings", st.session_state.config['leafmachine']['print'].get('optional_warnings', True))

    with col_v2:
        log_level = st.session_state.config['leafmachine']['logging'].get('log_level', None)
        log_level_display = log_level if log_level is not None else 'default'
        selected_log_level = st.selectbox("Logging Level", ['default', 'DEBUG', 'INFO', 'WARNING', 'ERROR'], index=['default', 'DEBUG', 'INFO', 'WARNING', 'ERROR'].index(log_level_display))
        
        if selected_log_level == 'default':
            st.session_state.config['leafmachine']['logging']['log_level'] = None
        else:
            st.session_state.config['leafmachine']['logging']['log_level'] = selected_log_level

def content_tab_domain():
    st.header('Embeddings Database')
    col_emb_1, col_emb_2 = st.columns([4,2])  
    with col_emb_1:
        st.markdown(
            """
            VoucherVision includes the option of using domain knowledge inside of the dynamically generated prompts. The OCR text is queried against a database of existing label transcriptions. The most similar existing transcriptions act as an example of what the LLM should emulate and are shown to the LLM as JSON objects. VoucherVision uses cosine similarity search to return the most similar existing transcription.
            - Note: Using domain knowledge may increase the chance that foreign text is included in the final transcription  
            - Disabling this feature will show the LLM multiple examples of an empty JSON skeleton structure instead
            - Enabling this option requires a GPU with at least 8GB of VRAM
            - The domain knowledge files can be located in the directory "../VoucherVision/domain_knowledge". On first run the embeddings database must be created, which takes time. If the database creation runs each time you use VoucherVision, then something is wrong.
            """
            )
            
        st.write(f"Domain Knowledge is only available for the following prompts:")
        for available_prompts in PROMPTS_THAT_NEED_DOMAIN_KNOWLEDGE:
            st.markdown(f"- {available_prompts}")
        
        if st.session_state.config['leafmachine']['project']['prompt_version'] in PROMPTS_THAT_NEED_DOMAIN_KNOWLEDGE:
            st.session_state.config['leafmachine']['project']['use_domain_knowledge'] = st.checkbox("Use domain knowledge", True, disabled=True)
        else:
            st.session_state.config['leafmachine']['project']['use_domain_knowledge'] = st.checkbox("Use domain knowledge", False, disabled=True)

        st.write("")
        if st.session_state.config['leafmachine']['project']['use_domain_knowledge']:
            st.session_state.config['leafmachine']['project']['embeddings_database_name'] = st.text_input("Embeddings database name (only use underscores)", st.session_state.config['leafmachine']['project'].get('embeddings_database_name', ''))
            st.session_state.config['leafmachine']['project']['build_new_embeddings_database'] = st.checkbox("Build *new* embeddings database", st.session_state.config['leafmachine']['project'].get('build_new_embeddings_database', False))
            st.session_state.config['leafmachine']['project']['path_to_domain_knowledge_xlsx'] = st.text_input("Path to domain knowledge CSV file (will be used to create new embeddings database)", st.session_state.config['leafmachine']['project'].get('path_to_domain_knowledge_xlsx', ''))
        else:
            st.session_state.config['leafmachine']['project']['embeddings_database_name'] = st.text_input("Embeddings database name (only use underscores)", st.session_state.config['leafmachine']['project'].get('embeddings_database_name', ''), disabled=True)
            st.session_state.config['leafmachine']['project']['build_new_embeddings_database'] = st.checkbox("Build *new* embeddings database", st.session_state.config['leafmachine']['project'].get('build_new_embeddings_database', False), disabled=True)
            st.session_state.config['leafmachine']['project']['path_to_domain_knowledge_xlsx'] = st.text_input("Path to domain knowledge CSV file (will be used to create new embeddings database)", st.session_state.config['leafmachine']['project'].get('path_to_domain_knowledge_xlsx', ''), disabled=True)

def render_expense_report_summary():
    expense_summary = st.session_state.expense_summary
    expense_report = st.session_state.expense_report
    st.header('Expense Report Summary')

    if expense_summary:
        st.metric(label="Total Cost", value=f"${round(expense_summary['total_cost_sum'], 4):,}")
        col1, col2 = st.columns(2)

        # Run count and total costs
        with col1:
            st.metric(label="Run Count", value=expense_summary['run_count'])
            st.metric(label="Tokens In", value=f"{expense_summary['tokens_in_sum']:,}")

        # Token information
        with col2:
            st.metric(label="Total Images", value=expense_summary['n_images_sum'])
            st.metric(label="Tokens Out", value=f"{expense_summary['tokens_out_sum']:,}")


        # Calculate cost proportion per image for each API version
        st.subheader('Average Cost per Image by API Version')
        cost_labels = []
        cost_values = []
        total_images = 0
        cost_per_image_dict = {}
        # Iterate through the expense report to accumulate costs and image counts
        for index, row in expense_report.iterrows():
            api_version = row['api_version']
            total_cost = row['total_cost']
            n_images = row['n_images']
            total_images += n_images  # Keep track of total images processed
            if api_version not in cost_per_image_dict:
                cost_per_image_dict[api_version] = {'total_cost': 0, 'n_images': 0}
            cost_per_image_dict[api_version]['total_cost'] += total_cost
            cost_per_image_dict[api_version]['n_images'] += n_images

        api_versions = list(cost_per_image_dict.keys())
        colors = [COLORS_EXPENSE_REPORT[version] if version in COLORS_EXPENSE_REPORT else '#DDDDDD' for version in api_versions]
        
        # Calculate the cost per image for each API version
        for version, cost_data in cost_per_image_dict.items():
            total_cost = cost_data['total_cost']
            n_images = cost_data['n_images']
            # Calculate the cost per image for this version
            cost_per_image = total_cost / n_images if n_images > 0 else 0
            cost_labels.append(version)
            cost_values.append(cost_per_image)
        # Generate the pie chart
        cost_pie_chart = go.Figure(data=[go.Pie(labels=cost_labels, values=cost_values, hole=.3)])
        # Update traces for custom text in hoverinfo, displaying cost with a dollar sign and two decimal places
        cost_pie_chart.update_traces(
            marker=dict(colors=colors),
            text=[f"${value:.2f}" for value in cost_values],  # Formats the cost as a string with a dollar sign and two decimals
            textinfo='percent+label',
            hoverinfo='label+percent+text'  # Adds custom text (formatted cost) to the hover information
        )
        st.plotly_chart(cost_pie_chart, use_container_width=True)

        st.subheader('Proportion of Total Cost by API Version')
        cost_labels = []
        cost_proportions = []
        total_cost_by_version = {}
        # Sum the total cost for each API version
        for index, row in expense_report.iterrows():
            api_version = row['api_version']
            total_cost = row['total_cost']
            if api_version not in total_cost_by_version:
                total_cost_by_version[api_version] = 0
            total_cost_by_version[api_version] += total_cost
        # Calculate the combined total cost for all versions
        combined_total_cost = sum(total_cost_by_version.values())
        # Calculate the proportion of total cost for each API version
        for version, total_cost in total_cost_by_version.items():
            proportion = (total_cost / combined_total_cost) * 100 if combined_total_cost > 0 else 0
            cost_labels.append(version)
            cost_proportions.append(proportion)
        # Generate the pie chart
        cost_pie_chart = go.Figure(data=[go.Pie(labels=cost_labels, values=cost_proportions, hole=.3)])
        # Update traces for custom text in hoverinfo
        cost_pie_chart.update_traces(
            marker=dict(colors=colors),
            text=[f"${cost:.2f}" for cost in total_cost_by_version.values()],  # This will format the cost to 2 decimal places
            textinfo='percent+label',
            hoverinfo='label+percent+text'  # This tells Plotly to show the label, percent, and custom text (cost) on hover
        )
        st.plotly_chart(cost_pie_chart, use_container_width=True)

        # API version usage percentages pie chart
        st.subheader('Runs by API Version')
        api_versions = list(expense_summary['api_version_percentages'].keys())
        percentages = [expense_summary['api_version_percentages'][version] for version in api_versions]
        pie_chart = go.Figure(data=[go.Pie(labels=api_versions, values=percentages, hole=.3)])
        pie_chart.update_layout(margin=dict(t=0, b=0, l=0, r=0))
        pie_chart.update_traces(marker=dict(colors=colors),)
        st.plotly_chart(pie_chart, use_container_width=True)

    else:
        st.error('No expense report data available.')

def sidebar_content():
    try:
        validate_dir(os.path.join(st.session_state.dir_home,'expense_report'))
        st.session_state.expense_summary, st.session_state.expense_report = summarize_expense_report(os.path.join(st.session_state.dir_home,'expense_report','expense_report.csv'))
        render_expense_report_summary()  
    except:
        st.header('Expense Report Summary')
        st.write('Available after first run...')
        st.write('Google PaLM 2 is not tracked since it is currently free.')

def main():
    with st.sidebar:
        sidebar_content()
    # Main App
    content_header()

    # tab_settings, tab_prompt, tab_domain, tab_component, tab_processing, tab_private, tab_delete = st.tabs(["Project Settings", "Prompt Builder", "Domain Knowledge","Component Detector", "Processing Options", "API Keys", "Space-Saver"])
    tab_settings, tab_prompt, tab_domain, tab_component, tab_processing, tab_delete = st.tabs(["Project Settings", "Prompt Builder", "Domain Knowledge","Component Detector", "Processing Options", "Space-Saver"])

    with tab_settings:
        content_tab_settings()

    with tab_prompt:
        if st.button("Build Custom LLM Prompt"):
            st.session_state.proceed_to_build_llm_prompt = True
            st.rerun()
        
    with tab_component:
        content_tab_component()

    with tab_domain:
        content_tab_domain()

    with tab_processing:
        content_tab_processing()

    # with tab_private:
    #     if st.button("Edit API Keys"):
    #         st.session_state.proceed_to_private = True
    #         st.rerun()

    with tab_delete:
        create_space_saver()

st.set_page_config(layout="wide", page_icon='img/icon.ico', page_title='VoucherVision')

# Default YAML file path
if 'config' not in st.session_state:
    st.session_state.config, st.session_state.dir_home = build_VV_config()
    setup_streamlit_config(st.session_state.dir_home)

if 'proceed_to_main' not in st.session_state:
    st.session_state.proceed_to_main = True  # New state variable to control the flow

if 'proceed_to_build_llm_prompt' not in st.session_state:
    st.session_state.proceed_to_build_llm_prompt = False  # New state variable to control the flow
if 'proceed_to_private' not in st.session_state:
    st.session_state.proceed_to_private = False  # New state variable to control the flow

if 'dir_uploaded_images' not in st.session_state:
    st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
    validate_dir(os.path.join(st.session_state.dir_home,'uploads'))
# if 'private_file' not in st.session_state:
#     st.session_state.private_file = does_private_file_exist()
#     if st.session_state.private_file:
#         st.session_state.proceed_to_main = True

# Initialize session_state variables if they don't exist
if 'prompt_info' not in st.session_state:
    st.session_state['prompt_info'] = {}
if 'rules' not in st.session_state:
    st.session_state['rules'] = {}
if 'zip_filepath' not in st.session_state:
    st.session_state['zip_filepath'] = None
if 'input_list' not in st.session_state:
    st.session_state['input_list'] = []
    

# if not st.session_state.private_file:
#     create_private_file()
if st.session_state.proceed_to_build_llm_prompt:
    build_LLM_prompt_config()
elif st.session_state.proceed_to_private:
    # create_private_file()
    pass
elif st.session_state.proceed_to_main:
    main()