Spaces:
Running
Running
File size: 9,107 Bytes
e91ac58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import json, torch, transformers, gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from vouchervision.utils_LLM import SystemLoadMonitor, count_tokens
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template
from vouchervision.utils_taxonomy_WFO import validate_taxonomy_WFO
from vouchervision.utils_geolocate_HERE import validate_coordinates_here
'''
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines
'''
class LocalMistralHandler:
RETRY_DELAY = 2 # Wait 2 seconds before retrying
MAX_RETRIES = 5 # Maximum number of retries
STARTING_TEMP = 0.1
TOKENIZER_NAME = None
VENDOR = 'mistral'
MAX_GPU_MONITORING_INTERVAL = 2 # seconds
def __init__(self, logger, model_name, JSON_dict_structure):
self.logger = logger
self.has_GPU = torch.cuda.is_available()
self.monitor = SystemLoadMonitor(logger)
self.model_name = model_name
self.model_id = f"mistralai/{self.model_name}"
name_parts = self.model_name.split('-')
self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json")
self.JSON_dict_structure = JSON_dict_structure
self.starting_temp = float(self.STARTING_TEMP)
self.temp_increment = float(0.2)
self.adjust_temp = self.starting_temp
system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user."
template = """
<s>[INST]{}[/INST]</s>
[INST]{}[/INST]
""".format(system_prompt, "{query}")
# Create a prompt from the template so we can use it with Langchain
self.prompt = PromptTemplate(template=template, input_variables=["query"])
# Set up a parser
self.parser = JsonOutputParser()
self._set_config()
# def _clear_VRAM(self):
# # Clear CUDA cache if it's being used
# if self.has_GPU:
# self.local_model = None
# self.local_model_pipeline = None
# del self.local_model
# del self.local_model_pipeline
# gc.collect() # Explicitly invoke garbage collector
# torch.cuda.empty_cache()
# else:
# self.local_model_pipeline = None
# self.local_model = None
# del self.local_model_pipeline
# del self.local_model
# gc.collect() # Explicitly invoke garbage collector
def _set_config(self):
# self._clear_VRAM()
self.config = {'max_new_tokens': 1024,
'temperature': self.starting_temp,
'seed': 2023,
'top_p': 1,
'top_k': 40,
'do_sample': True,
'n_ctx':4096,
# Activate 4-bit precision base model loading
'use_4bit': True,
# Compute dtype for 4-bit base models
'bnb_4bit_compute_dtype': "float16",
# Quantization type (fp4 or nf4)
'bnb_4bit_quant_type': "nf4",
# Activate nested quantization for 4-bit base models (double quantization)
'use_nested_quant': False,
}
compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') )
self.bnb_config = BitsAndBytesConfig(
load_in_4bit=self.config.get('use_4bit'),
bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'),
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=self.config.get('use_nested_quant'),
)
# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and self.config.get('use_4bit'):
major, _ = torch.cuda.get_device_capability()
if major >= 8:
# print("=" * 80)
# print("Your GPU supports bfloat16: accelerate training with bf16=True")
# print("=" * 80)
self.b_float_opt = torch.bfloat16
else:
self.b_float_opt = torch.float16
self._build_model_chain_parser()
def _adjust_config(self):
new_temp = self.adjust_temp + self.temp_increment
self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
self.adjust_temp += self.temp_increment
def _reset_config(self):
self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
self.adjust_temp = self.starting_temp
def _build_model_chain_parser(self):
self.local_model_pipeline = transformers.pipeline("text-generation",
model=self.model_id,
max_new_tokens=self.config.get('max_new_tokens'),
top_k=self.config.get('top_k'),
top_p=self.config.get('top_p'),
do_sample=self.config.get('do_sample'),
model_kwargs={"torch_dtype": self.b_float_opt,
"load_in_4bit": True,
"quantization_config": self.bnb_config})
self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
# Set up the retry parser with the runnable
self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
# Create an llm chain with LLM and prompt
self.chain = self.prompt | self.local_model # LCEL
def call_llm_local_MistralAI(self, prompt_template, json_report):
self.json_report = json_report
self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
self.monitor.start_monitoring_usage()
nt_in = 0
nt_out = 0
ind = 0
while ind < self.MAX_RETRIES:
ind += 1
try:
# Dynamically set the temperature for this specific request
model_kwargs = {"temperature": self.adjust_temp}
# Invoke the chain to generate prompt text
results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})
# Use retry_parser to parse the response with retry logic
output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)
if output is None:
self.logger.error(f'Failed to extract JSON from:\n{results}')
self._adjust_config()
del results
else:
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
if output is None:
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}')
self._adjust_config()
else:
json_report.set_text(text_main=f'Working on WFO and Geolocation')
output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) # Make configurable if needed
output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) # Make configurable if needed
self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")
self.monitor.stop_monitoring_report_usage()
if self.adjust_temp != self.starting_temp:
self._reset_config()
json_report.set_text(text_main=f'LLM call successful')
del results
return output, nt_in, nt_out, WFO_record, GEO_record
except Exception as e:
self.logger.error(f'{e}')
self._adjust_config()
self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')
self.monitor.stop_monitoring_report_usage()
json_report.set_text(text_main=f'LLM call failed')
self._reset_config()
return None, nt_in, nt_out, None, None
|