Spaces:
Running
Running
File size: 37,948 Bytes
524a99c e91ac58 01e6026 87c3140 524a99c 87c3140 e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c a1e2ec1 524a99c a1e2ec1 e91ac58 524a99c e91ac58 a1e2ec1 524a99c 67f7ed6 ae215ea a1e2ec1 4d5e173 a1e2ec1 b8abf64 a1e2ec1 4d5e173 524a99c ae215ea 524a99c ae215ea 524a99c ae215ea 567930d 524a99c ae215ea 524a99c ae215ea 67f7ed6 dbaeac5 524a99c ae215ea 524a99c 567930d 524a99c b8abf64 e91ac58 524a99c e91ac58 524a99c e91ac58 ae215ea 524a99c e91ac58 524a99c e91ac58 ae215ea 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c 567930d 524a99c e91ac58 524a99c e91ac58 ae215ea 524a99c e91ac58 ae215ea 524a99c ae215ea 524a99c e91ac58 ae215ea e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 a1e2ec1 e91ac58 a1e2ec1 e91ac58 524a99c e91ac58 01e6026 e91ac58 a1e2ec1 e91ac58 524a99c e91ac58 524a99c ae215ea 524a99c 567930d 524a99c 67f7ed6 524a99c ae215ea 524a99c ae215ea 524a99c ae215ea 524a99c ae215ea c6a70af 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c e91ac58 524a99c ae215ea 524a99c 567930d 48bf402 567930d 48bf402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
import os, io, sys, inspect, statistics, json, cv2
from statistics import mean
# from google.cloud import vision, storage
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
from PIL import Image, ImageDraw, ImageFont
import colorsys
from tqdm import tqdm
from google.oauth2 import service_account
### LLaVA should only be installed if the user will actually use it.
### It requires the most recent pytorch/Python and can mess with older systems
'''
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{baek2019character,
title={Character Region Awareness for Text Detection},
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9365--9374},
year={2019}
}
'''
class OCREngine:
BBOX_COLOR = "black"
def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
self.is_hf = is_hf
self.logger = logger
self.json_report = json_report
self.path = path
self.cfg = cfg
self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
self.double_OCR = self.cfg['leafmachine']['project']['double_OCR']
self.dir_home = dir_home
# Initialize TrOCR components
self.trOCR_model_version = trOCR_model_version
self.trOCR_processor = trOCR_processor
self.trOCR_model = trOCR_model
self.device = device
self.hand_cleaned_text = None
self.hand_organized_text = None
self.hand_bounds = None
self.hand_bounds_word = None
self.hand_bounds_flat = None
self.hand_text_to_box_mapping = None
self.hand_height = None
self.hand_confidences = None
self.hand_characters = None
self.normal_cleaned_text = None
self.normal_organized_text = None
self.normal_bounds = None
self.normal_bounds_word = None
self.normal_text_to_box_mapping = None
self.normal_bounds_flat = None
self.normal_height = None
self.normal_confidences = None
self.normal_characters = None
self.trOCR_texts = None
self.trOCR_text_to_box_mapping = None
self.trOCR_bounds_flat = None
self.trOCR_height = None
self.trOCR_confidences = None
self.trOCR_characters = None
self.set_client()
self.init_craft()
self.multimodal_prompt = """I need you to transcribe all of the text in this image.
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
self.init_llava()
def set_client(self):
if self.is_hf:
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
else:
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
def get_google_credentials(self):
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
return credentials
def init_craft(self):
if 'CRAFT' in self.OCR_option:
from craft_text_detector import load_craftnet_model, load_refinenet_model
try:
self.refine_net = load_refinenet_model(cuda=True)
self.use_cuda = True
except:
self.refine_net = load_refinenet_model(cuda=False)
self.use_cuda = False
if self.use_cuda:
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True)
else:
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False)
def init_llava(self):
if 'LLaVA' in self.OCR_option:
from vouchervision.OCR_llava import OCRllava
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
if self.json_report:
self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}')
if self.model_quant == '4bit':
use_4bit = True
elif self.model_quant == 'full':
use_4bit = False
else:
self.logger.info(f"Provided model quantization invlid. Using 4bit.")
use_4bit = True
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
def init_gemini_vision(self):
pass
def init_gpt4_vision(self):
pass
def detect_text_craft(self):
from craft_text_detector import read_image, get_prediction
# Perform prediction using CRAFT
image = read_image(self.path)
link_threshold = 0.85
text_threshold = 0.4
low_text = 0.4
if self.use_cuda:
self.prediction_result = get_prediction(
image=image,
craft_net=self.craft_net,
refine_net=self.refine_net,
text_threshold=text_threshold,
link_threshold=link_threshold,
low_text=low_text,
cuda=True,
long_size=1280
)
else:
self.prediction_result = get_prediction(
image=image,
craft_net=self.craft_net,
refine_net=self.refine_net,
text_threshold=text_threshold,
link_threshold=link_threshold,
low_text=low_text,
cuda=False,
long_size=1280
)
# Initialize metadata structures
bounds = []
bounds_word = [] # CRAFT gives bounds for text regions, not individual words
text_to_box_mapping = []
bounds_flat = []
height_flat = []
confidences = [] # CRAFT does not provide confidences per character, so this might be uniformly set or estimated
characters = [] # Simulating as CRAFT doesn't provide character-level details
organized_text = ""
total_b = len(self.prediction_result["boxes"])
i=0
# Process each detected text region
for box in self.prediction_result["boxes"]:
i+=1
if self.json_report:
self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}')
vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box]
# Simulate a mapping for the whole detected region as a word
text_to_box_mapping.append({
"vertices": vertices,
"text": "detected_text" # Placeholder, as CRAFT does not provide the text content directly
})
# Assuming each box is a word for the sake of this example
bounds_word.append({"vertices": vertices})
# For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this
# Instead, we create a single large 'character' per detected region
bounds.append({"vertices": vertices})
# Simulate flat bounds and height for each detected region
x_positions = [vertex["x"] for vertex in vertices]
y_positions = [vertex["y"] for vertex in vertices]
min_x, max_x = min(x_positions), max(x_positions)
min_y, max_y = min(y_positions), max(y_positions)
avg_height = max_y - min_y
height_flat.append(avg_height)
# Assuming uniform confidence for all detected regions
confidences.append(1.0) # Placeholder confidence
# Adding dummy character for each box
characters.append("X") # Placeholder character
# Organize text as a single string (assuming each box is a word)
# organized_text += "detected_text " # Placeholder text
# Update class attributes with processed data
self.normal_bounds = bounds
self.normal_bounds_word = bounds_word
self.normal_text_to_box_mapping = text_to_box_mapping
self.normal_bounds_flat = bounds_flat # This would be similar to bounds if not processing characters individually
self.normal_height = height_flat
self.normal_confidences = confidences
self.normal_characters = characters
self.normal_organized_text = organized_text.strip()
def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
CONFIDENCES = 0.80
MAX_NEW_TOKENS = 50
self.OCR_JSON_to_file = {}
ocr_parts = ''
if not do_use_trOCR:
if 'normal' in self.OCR_option:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
# ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}"
ocr_parts = self.normal_organized_text
if 'hand' in self.OCR_option:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
# ocr_parts = ocr_parts + f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
ocr_parts = self.hand_organized_text
# if self.OCR_option in ['both',]:
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
# return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
return ocr_parts
else:
logger.info(f'Supplementing with trOCR')
self.trOCR_texts = []
original_image = Image.open(self.path).convert("RGB")
if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option:
available_bounds = self.normal_bounds_word
elif 'hand' in self.OCR_option:
available_bounds = self.hand_bounds_word
# elif self.OCR_option in ['both',]:
# available_bounds = self.hand_bounds_word
else:
raise
text_to_box_mapping = []
characters = []
height = []
confidences = []
total_b = len(available_bounds)
i=0
for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
i+=1
if self.json_report:
self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}')
vertices = bound["vertices"]
left = min([v["x"] for v in vertices])
top = min([v["y"] for v in vertices])
right = max([v["x"] for v in vertices])
bottom = max([v["y"] for v in vertices])
# Crop image based on Google's bounding box
cropped_image = original_image.crop((left, top, right, bottom))
pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values
# Move pixel values to the appropriate device
pixel_values = pixel_values.to(self.device)
generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
self.trOCR_texts.append(extracted_text)
# For plotting
word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
num_symbols = len(extracted_text)
Yw = max(vertex.get('y') for vertex in vertices)
Yo = Yw - min(vertex.get('y') for vertex in vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
height.append(H)
map_dict = {
"vertices": vertices,
"text": extracted_text # Use the text extracted by trOCR
}
text_to_box_mapping.append(map_dict)
characters.append(extracted_text)
confidences.append(CONFIDENCES)
median_height = statistics.median(height) if height else 0
median_heights = [median_height * 1.5] * len(characters)
self.trOCR_texts = ' '.join(self.trOCR_texts)
self.trOCR_text_to_box_mapping = text_to_box_mapping
self.trOCR_bounds_flat = available_bounds
self.trOCR_height = median_heights
self.trOCR_confidences = confidences
self.trOCR_characters = characters
if 'normal' in self.OCR_option:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
if 'hand' in self.OCR_option:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
# if self.OCR_option in ['both',]:
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
# self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
# self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
if 'CRAFT' in self.OCR_option:
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts
# logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nCRAFT_trOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
return ocr_parts
@staticmethod
def confidence_to_color(confidence):
hue = (confidence - 0.5) * 120 / 0.5
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
return (int(r*255), int(g*255), int(b*255))
def render_text_on_black_image(self, option):
bounds_flat = getattr(self, f'{option}_bounds_flat', [])
heights = getattr(self, f'{option}_height', [])
confidences = getattr(self, f'{option}_confidences', [])
characters = getattr(self, f'{option}_characters', [])
original_image = Image.open(self.path)
width, height = original_image.size
black_image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(black_image)
for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
font_size = int(char_height)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except:
font = ImageFont.load_default().font_variant(size=font_size)
if option == 'trOCR':
color = (0, 170, 255)
else:
color = OCREngine.confidence_to_color(confidence)
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
draw.text(position, character, fill=color, font=font)
return black_image
def merge_images(self, image1, image2):
width1, height1 = image1.size
width2, height2 = image2.size
merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
merged_image.paste(image1, (0, 0))
merged_image.paste(image2, (width1, 0))
return merged_image
def draw_boxes(self, option):
bounds = getattr(self, f'{option}_bounds', [])
bounds_word = getattr(self, f'{option}_bounds_word', [])
confidences = getattr(self, f'{option}_confidences', [])
draw = ImageDraw.Draw(self.image)
width, height = self.image.size
if min([width, height]) > 4000:
line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level
line_width_thin = 1
else:
line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level
line_width_thin = 1 #int((width + height) / 2 * 0.001)
for bound in bounds_word:
draw.polygon(
[
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
],
outline=OCREngine.BBOX_COLOR,
width=line_width_thin
)
# Draw a line segment at the bottom of each handwritten character
for bound, confidence in zip(bounds, confidences):
color = OCREngine.confidence_to_color(confidence)
# Use the bottom two vertices of the bounding box for the line
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)
return self.image
def detect_text(self):
with io.open(self.path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = self.client.document_text_detection(image=image)
texts = response.text_annotations
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
bounds = []
bounds_word = []
text_to_box_mapping = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.normal_cleaned_text = texts[0].description if texts else ''
self.normal_organized_text = organized_text
self.normal_bounds = bounds
self.normal_bounds_word = bounds_word
self.normal_text_to_box_mapping = text_to_box_mapping
self.normal_bounds_flat = bounds_flat
# self.normal_height = median_heights #height_flat
self.normal_height = height_flat
self.normal_confidences = confidences
self.normal_characters = characters
return self.normal_cleaned_text
def detect_handwritten_ocr(self):
with open(self.path, "rb") as image_file:
content = image_file.read()
image = vision_beta.Image(content=content)
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
response = self.client_beta.document_text_detection(image=image, image_context=image_context)
texts = response.text_annotations
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
bounds = []
bounds_word = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
text_to_box_mapping = []
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
self.hand_organized_text = organized_text
self.hand_bounds = bounds
self.hand_bounds_word = bounds_word
self.hand_bounds_flat = bounds_flat
self.hand_text_to_box_mapping = text_to_box_mapping
# self.hand_height = median_heights #height_flat
self.hand_height = height_flat
self.hand_confidences = confidences
self.hand_characters = characters
return self.hand_cleaned_text
def process_image(self, do_create_OCR_helper_image, logger):
# Can stack options, so solitary if statements
self.OCR = 'OCR:\n'
if 'CRAFT' in self.OCR_option:
self.do_use_trOCR = True
self.detect_text_craft()
### Optionally add trOCR to the self.OCR for additional context
if self.double_OCR:
part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
# logger.info(f"CRAFT trOCR:\n{self.OCR}")
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
if self.json_report:
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
try:
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
except:
self.OCR_JSON_to_file = {}
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
if self.double_OCR:
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}"
else:
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}"
# logger.info(f"LLaVA OCR:\n{self.OCR}")
if 'normal' in self.OCR_option or 'hand' in self.OCR_option:
if 'normal' in self.OCR_option:
if self.double_OCR:
part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
if 'hand' in self.OCR_option:
if self.double_OCR:
part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
# if self.OCR_option not in ['normal', 'hand', 'both']:
# self.OCR_option = 'both'
# self.detect_text()
# self.detect_handwritten_ocr()
### Optionally add trOCR to the self.OCR for additional context
if self.do_use_trOCR:
if self.double_OCR:
part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
# logger.info(f"OCR:\n{self.OCR}")
else:
# populate self.OCR_JSON_to_file = {}
_ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option):
self.image = Image.open(self.path)
if 'normal' in self.OCR_option:
image_with_boxes_normal = self.draw_boxes('normal')
text_image_normal = self.render_text_on_black_image('normal')
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)
if 'hand' in self.OCR_option:
image_with_boxes_hand = self.draw_boxes('hand')
text_image_hand = self.render_text_on_black_image('hand')
self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)
if self.do_use_trOCR:
text_image_trOCR = self.render_text_on_black_image('trOCR')
if 'CRAFT' in self.OCR_option:
image_with_boxes_normal = self.draw_boxes('normal')
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR)
### Merge final overlay image
### [original, normal bboxes, normal text]
if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
### [original, hand bboxes, hand text]
elif 'hand' in self.OCR_option:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
### [original, normal bboxes, normal text, hand bboxes, hand text]
else:
self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
if self.do_use_trOCR:
if 'CRAFT' in self.OCR_option:
heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB))
heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB))
self.overlay_image = self.merge_images(self.overlay_image, heat_map_text)
self.overlay_image = self.merge_images(self.overlay_image, heat_map_link)
else:
self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)
else:
self.merged_image_normal = None
self.merged_image_hand = None
self.overlay_image = Image.open(self.path)
try:
from craft_text_detector import empty_cuda_cache
empty_cuda_cache()
except:
pass
class SafetyCheck():
def __init__(self, is_hf) -> None:
self.is_hf = is_hf
self.set_client()
def set_client(self):
if self.is_hf:
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
else:
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
def get_google_credentials(self):
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
return credentials
def check_for_inappropriate_content(self, file_stream):
self.client = vision.ImageAnnotatorClient()
content = file_stream.read()
image = vision.Image(content=content)
response = self.client.safe_search_detection(image=image)
safe = response.safe_search_annotation
# Check the levels of adult, violence, racy, etc. content.
if (safe.adult > vision.Likelihood.POSSIBLE or
safe.violence > vision.Likelihood.POSSIBLE or
safe.racy > vision.Likelihood.POSSIBLE):
return True # The image violates safe search guidelines.
return False # The image is considered safe. |