File size: 9,123 Bytes
9d06861
e91ac58
 
 
 
806953a
e91ac58
 
ae215ea
b8abf64
e91ac58
ae215ea
e91ac58
 
 
 
 
 
 
 
 
 
567930d
ae215ea
 
 
 
 
e91ac58
 
 
 
567930d
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
 
 
 
 
 
 
 
 
 
e91ac58
 
567930d
e91ac58
567930d
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
567930d
 
e91ac58
 
 
 
 
567930d
 
e91ac58
 
 
 
 
 
567930d
 
 
 
 
ae215ea
 
 
 
e91ac58
d0291ae
 
 
 
e91ac58
 
 
 
 
ae215ea
 
 
 
e91ac58
 
9d06861
 
e91ac58
567930d
 
e91ac58
 
 
 
 
 
 
 
567930d
e91ac58
567930d
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
 
567930d
 
ae215ea
e91ac58
ae215ea
9d06861
 
e91ac58
9d06861
e91ac58
 
 
 
567930d
 
9d06861
e91ac58
 
 
 
 
 
 
 
567930d
 
ae215ea
 
e91ac58
9d06861
e91ac58
 
567930d
 
9d06861
e91ac58
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os, time, json
import vertexai
from vertexai.preview.generative_models import GenerativeModel
from vertexai.generative_models._generative_models import HarmCategory, HarmBlockThreshold
from langchain.output_parsers import RetryWithErrorOutputParser
# from langchain.schema import HumanMessage
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_vertexai import VertexAI

from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template

class GoogleGeminiHandler: 

    RETRY_DELAY = 10  # Wait 10 seconds before retrying
    MAX_RETRIES = 3  # Maximum number of retries
    TOKENIZER_NAME = 'gpt-4'
    VENDOR = 'google'
    STARTING_TEMP = 0.5

    def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation):
        self.cfg = cfg
        self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
        self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
        self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']

        self.logger = logger
        self.model_name = model_name
        self.JSON_dict_structure = JSON_dict_structure

        self.config_vals_for_permutation = config_vals_for_permutation
        
        self.monitor = SystemLoadMonitor(logger)

        self.parser = JsonOutputParser()

        # Define the prompt template
        self.prompt = PromptTemplate(
            template="Answer the user query.\n{format_instructions}\n{query}\n",
            input_variables=["query"],
            partial_variables={"format_instructions": self.parser.get_format_instructions()},
        )
        self._set_config()


    def _set_config(self):
        # os.environ['GOOGLE_API_KEY'] # Must be set too for the retry call, set in VoucherVision class along with other API Keys
        # vertexai.init(project=os.environ['PALM_PROJECT_ID'], location=os.environ['PALM_LOCATION'])
        if self.config_vals_for_permutation:
            self.starting_temp = float(self.config_vals_for_permutation.get('google').get('temperature'))
            self.config = {
                    'max_output_tokens': self.config_vals_for_permutation.get('google').get('max_output_tokens'),
                    'temperature': self.starting_temp,
                    'top_p': self.config_vals_for_permutation.get('google').get('top_p'),
                    }
        else:
            self.starting_temp = float(self.STARTING_TEMP)
            self.config = {
                "max_output_tokens": 1024,
                "temperature": self.starting_temp,
                "top_p": 1.0,
            }

        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp   

        self.safety_settings = {
            HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
            HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
            HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
            HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
        }
        self._build_model_chain_parser()
        
    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        if self.json_report:            
            self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.adjust_temp += self.temp_increment
        self.config['temperature'] = self.adjust_temp   

    def _reset_config(self):
        if self.json_report:            
            self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.adjust_temp = self.starting_temp
        self.config['temperature'] = self.starting_temp  

    def _build_model_chain_parser(self):
        # Instantiate the LLM class for Google Gemini
        self.llm_model = ChatGoogleGenerativeAI(model=self.model_name, 
                                    max_output_tokens=self.config.get('max_output_tokens'),
                                    top_p=self.config.get('top_p'),
                                    temperature=self.config.get('temperature')
                                    )    
        # self.llm_model = VertexAI(model='gemini-1.0-pro', 
        #                           max_output_tokens=self.config.get('max_output_tokens'),
        #                           top_p=self.config.get('top_p'))   

        # Set up the retry parser with the runnable
        self.retry_parser = RetryWithErrorOutputParser.from_llm(
            parser=self.parser, 
            llm=self.llm_model, 
            max_retries=self.MAX_RETRIES)
        # Prepare the chain
        self.chain = self.prompt | self.call_google_gemini     

    # Define a function to format the input for Google Gemini call
    def call_google_gemini(self, prompt_text):
        model = GenerativeModel(self.model_name)#,
                                        # generation_config=self.config,
                                        # safety_settings=self.safety_settings)
        response = model.generate_content(prompt_text.text)
        return response.text
    
    def call_llm_api_GoogleGemini(self, prompt_template, json_report, paths):
        _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths
        self.json_report = json_report
        if self.json_report:            
            self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()
        nt_in = 0
        nt_out = 0
        
        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            try:
                # model_kwargs = {"temperature": self.adjust_temp}
                # Invoke the chain to generate prompt text
                response = self.chain.invoke({"query": prompt_template})#, "model_kwargs": model_kwargs})

                # Use retry_parser to parse the response with retry logic
                output = self.retry_parser.parse_with_prompt(response, prompt_value=prompt_template)

                if output is None:
                    self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
                    self._adjust_config()
                else:
                    nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(response, self.VENDOR, self.TOKENIZER_NAME)

                    output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                    if output is None:
                        self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
                        self._adjust_config() 
                    else:
                        self.monitor.stop_inference_timer() # Starts tool timer too

                        if self.json_report:            
                            self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
                        output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki)

                        save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt)

                        self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")
                        
                        usage_report = self.monitor.stop_monitoring_report_usage()    

                        if self.adjust_temp != self.starting_temp:            
                            self._reset_config()

                        if self.json_report:            
                            self.json_report.set_text(text_main=f'LLM call successful')
                        return output, nt_in, nt_out, WFO_record, GEO_record, usage_report

            except Exception as e:
                self.logger.error(f'{e}')
                
                self._adjust_config()           
                time.sleep(self.RETRY_DELAY)

        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        if self.json_report:            
            self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')
        
        self.monitor.stop_inference_timer() # Starts tool timer too

        usage_report = self.monitor.stop_monitoring_report_usage()                
        self._reset_config()

        if self.json_report:            
            self.json_report.set_text(text_main=f'LLM call failed')
        return None, nt_in, nt_out, None, None, usage_report