File size: 8,163 Bytes
c5e57d6
 
 
 
e91ac58
c5e57d6
e91ac58
 
 
c5e57d6
ae215ea
e91ac58
 
 
aedd7d9
e91ac58
 
 
c5e57d6
e91ac58
 
 
 
 
 
 
567930d
ae215ea
 
 
 
c5e57d6
e91ac58
 
 
 
 
 
28ebe52
 
 
 
 
 
e91ac58
 
 
 
c5e57d6
e91ac58
c5e57d6
 
e91ac58
 
 
 
 
 
 
 
 
 
c5e57d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
c5e57d6
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
c5e57d6
 
 
 
 
 
 
 
 
e91ac58
c5e57d6
e91ac58
c5e57d6
e91ac58
c5e57d6
e91ac58
9d06861
c5e57d6
e91ac58
567930d
 
e91ac58
c5e57d6
e91ac58
 
 
c5e57d6
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5e57d6
e91ac58
c5e57d6
e91ac58
 
c5e57d6
 
567930d
 
c5e57d6
 
 
9d06861
ae215ea
e91ac58
c5e57d6
e91ac58
c5e57d6
e91ac58
c5e57d6
e91ac58
9d06861
567930d
 
e91ac58
9d06861
e91ac58
 
c5e57d6
 
 
567930d
c5e57d6
e91ac58
c5e57d6
 
567930d
 
e91ac58
 
c5e57d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json, os
import torch
import transformers
import gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers.retry import RetryOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_huggingface import HuggingFacePipeline
from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template

'''
Local Pipielines:
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines
'''

class LocalMistralHandler:
    RETRY_DELAY = 2  # Wait 2 seconds before retrying
    MAX_RETRIES = 5  # Maximum number of retries
    STARTING_TEMP = 0.1
    TOKENIZER_NAME = None
    VENDOR = 'mistral'
    MAX_GPU_MONITORING_INTERVAL = 2  # seconds

    def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation):
        self.cfg = cfg
        self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
        self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
        self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']
        
        self.logger = logger
        self.has_GPU = torch.cuda.is_available()
        self.monitor = SystemLoadMonitor(logger)

        self.model_name = model_name
        self.model_id = f"mistralai/{self.model_name}"
        huggingface_token = os.getenv("HUGGING_FACE_KEY")
        if not huggingface_token:
            self.logger.error("Hugging Face token is not set. Please set it using the HUGGING_FACE_KEY environment variable.")
            raise ValueError("Hugging Face token is not set.")
        
        self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model", filename="config.json", token=huggingface_token)

        self.JSON_dict_structure = JSON_dict_structure
        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp

        system_prompt = "You are a helpful AI assistant who answers queries by returning a JSON dictionary as specified by the user."
        template = "<s>[INST]{}[/INST]</s>[INST]{}[/INST]".format(system_prompt, "{query}")

        # Create a prompt from the template so we can use it with Langchain
        self.prompt = PromptTemplate(template=template, input_variables=["query"])

        # Set up a parser
        self.parser = JsonOutputParser()

        self._set_config()

    def _set_config(self):
        self.config = {
            'max_new_tokens': 1024,
            'temperature': self.starting_temp,
            'seed': 2023,
            'top_p': 1,
            'top_k': 40,
            'do_sample': True,
            'n_ctx': 4096,
            'use_4bit': True,
            'bnb_4bit_compute_dtype': "float16",
            'bnb_4bit_quant_type': "nf4",
            'use_nested_quant': False,
        }

        compute_dtype = getattr(torch, self.config.get('bnb_4bit_compute_dtype'))

        self.bnb_config = BitsAndBytesConfig(
            load_in_4bit=self.config.get('use_4bit'),
            bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'),
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_use_double_quant=self.config.get('use_nested_quant'),
        )

        if compute_dtype == torch.float16 and self.config.get('use_4bit'):
            major, _ = torch.cuda.get_device_capability()
            self.b_float_opt = torch.bfloat16 if major >= 8 else torch.float16

        self._build_model_chain_parser()

    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.adjust_temp += self.temp_increment

    def _reset_config(self):
        self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.adjust_temp = self.starting_temp

    def _build_model_chain_parser(self):
        self.local_model_pipeline = transformers.pipeline(
            "text-generation",
            model=self.model_id,
            max_new_tokens=self.config.get('max_new_tokens'),
            top_k=self.config.get('top_k'),
            top_p=self.config.get('top_p'),
            do_sample=self.config.get('do_sample'),
            model_kwargs={"torch_dtype": self.b_float_opt, "quantization_config": self.bnb_config},
        )
        self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)

        # Set up the retry parser with the runnable
        self.retry_parser = RetryOutputParser(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
        # Create an llm chain with LLM and prompt
        self.chain = self.prompt | self.local_model

    def call_llm_local_MistralAI(self, prompt_template, json_report, paths):
        json_file_path_wiki, txt_file_path_ind_prompt = paths[-2:]
        self.json_report = json_report
        if self.json_report:
            self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()

        nt_in = 0
        nt_out = 0

        for ind in range(self.MAX_RETRIES):
            try:
                model_kwargs = {"temperature": self.adjust_temp}
                results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})

                output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)

                if output is None:
                    self.logger.error(f'Failed to extract JSON from:\n{results}')
                    self._adjust_config()
                    del results
                else:
                    nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)

                    output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)

                    if output is None:
                        self.logger.error(f'[Attempt {ind + 1}] Failed to extract JSON from:\n{results}')
                        self._adjust_config()
                    else:
                        self.monitor.stop_inference_timer()  # Starts tool timer too

                        if self.json_report:
                            self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
                        output_WFO, WFO_record, output_GEO, GEO_record = run_tools(
                            output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki
                        )

                        save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt)

                        self.logger.info(f"Formatted JSON:\n{json.dumps(output, indent=4)}")

                        usage_report = self.monitor.stop_monitoring_report_usage()

                        if self.adjust_temp != self.starting_temp:
                            self._reset_config()

                        if self.json_report:
                            self.json_report.set_text(text_main=f'LLM call successful')
                        del results
                        return output, nt_in, nt_out, WFO_record, GEO_record, usage_report
            except Exception as e:
                self.logger.error(f'{e}')
                self._adjust_config()

        self.logger.info(f"Failed to extract valid JSON after [{self.MAX_RETRIES}] attempts")
        if self.json_report:
            self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{self.MAX_RETRIES}] attempts')

        self.monitor.stop_inference_timer()  # Starts tool timer too
        usage_report = self.monitor.stop_monitoring_report_usage()
        if self.json_report:
            self.json_report.set_text(text_main=f'LLM call failed')

        self._reset_config()
        return None, nt_in, nt_out, None, None, usage_report