File size: 63,964 Bytes
87c3140
37a138a
87c3140
 
 
 
 
 
 
 
 
1881d06
87c3140
a145e37
 
 
 
 
e91ac58
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7f534
87c3140
 
 
 
 
 
8570ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a145e37
87c3140
 
 
 
a145e37
e91ac58
 
87c3140
e91ac58
 
 
 
a145e37
 
87c3140
e91ac58
a145e37
87c3140
e91ac58
 
 
 
 
a145e37
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
c824976
87c3140
 
 
 
 
 
 
 
 
 
 
a145e37
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
a145e37
87c3140
 
 
 
 
 
 
a145e37
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a145e37
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5590fea
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
87c3140
 
 
 
 
 
 
 
 
524a99c
87c3140
 
 
 
 
 
 
 
524a99c
 
 
 
 
87c3140
 
 
 
 
 
 
 
524a99c
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881d06
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881d06
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
1881d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34c6d2f
 
 
bd72568
 
 
 
 
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
import os, yaml, datetime, argparse, re, cv2, random, shutil, tiktoken, json, csv
import streamlit as st
from collections import Counter
import pandas as pd
from pathlib import Path
from dataclasses import dataclass
from tqdm import tqdm
import numpy as np
import concurrent.futures
from time import perf_counter
import torch
from collections import defaultdict

try:
    from vouchervision.model_maps import ModelMaps
except:
    from model_maps import ModelMaps


'''
TIFF --> DNG
Install
https://helpx.adobe.com/camera-raw/using/adobe-dng-converter.html
Read
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_commandline.pdf

'''


# https://stackoverflow.com/questions/287871/how-do-i-print-colored-text-to-the-terminal

def validate_dir(dir):
    if not os.path.exists(dir):
        os.makedirs(dir, exist_ok=True)

def get_cfg_from_full_path(path_cfg):
    with open(path_cfg, "r") as ymlfile:
        cfg = yaml.full_load(ymlfile)
    return cfg

def num_tokens_from_string(string, encoding_name):
    try:
        # Ensure the encoding is obtained correctly.
        encoding = tiktoken.get_encoding(encoding_name)
        
        # Convert dictionary to string if it is not already a string
        if isinstance(string, dict):
            string = json.dumps(string, ensure_ascii=False)
        
        # Encode the string and return the number of tokens.
        num_tokens = len(encoding.encode(string))
    except Exception as e:
        # If there's any error, log it and return 0.
        print(f"An error occurred: {e}")
        num_tokens = 0

    return num_tokens

def add_to_expense_report(dir_home, data):
    path_expense_report = os.path.join(dir_home, 'expense_report','expense_report.csv')

    # Check if the file exists
    file_exists = os.path.isfile(path_expense_report)

    # Open the file in append mode if it exists, or write mode if it doesn't
    mode = 'a' if file_exists else 'w'
    
    with open(path_expense_report, mode=mode, newline='') as file:
        writer = csv.writer(file)
        
        # If the file does not exist, write the header first
        if not file_exists:
            writer.writerow(['run','date','api_version','total_cost', 'n_images', 'tokens_in', 'tokens_out', 'rate_in', 'rate_out', 'cost_in', 'cost_out','ocr_cost','ocr_tokens_in', 'ocr_tokens_out',])
        
        # Write the data row
        writer.writerow(data)

def save_token_info_as_csv(Dirs, LLM_version0, path_api_cost, total_tokens_in, total_tokens_out, OCR_cost, OCR_tokens_in, OCR_tokens_out, n_images, dir_home, logger):
    if path_api_cost:
        LLM_version = ModelMaps.get_version_mapping_cost(LLM_version0)

        # Define the CSV file path
        csv_file_path = os.path.join(Dirs.path_cost, Dirs.run_name + '.csv')

        cost_in, cost_out, total_cost, rate_in, rate_out = calculate_cost(LLM_version, path_api_cost, total_tokens_in, total_tokens_out)

        total_cost += OCR_cost
        
        # The data to be written to the CSV file
        data = [Dirs.run_name, get_datetime(),LLM_version, total_cost, n_images, total_tokens_in, total_tokens_out, rate_in, rate_out, cost_in, cost_out,OCR_cost, OCR_tokens_in, OCR_tokens_out,]
        
        # Open the file in write mode
        with open(csv_file_path, mode='w', newline='') as file:
            writer = csv.writer(file)
            
            # Write the header
            writer.writerow(['run','date','api_version','total_cost', 'n_images', 'tokens_in', 'tokens_out', 'rate_in', 'rate_out', 'cost_in', 'cost_out','ocr_cost','ocr_tokens_in', 'ocr_tokens_out'])
            
            # Write the data
            writer.writerow(data)
        # Create a summary string
        cost_summary = (f"Cost Summary for {Dirs.run_name}:\n"
                        f"     API Cost In: ${rate_in} per 1000 Tokens\n" 
                        f"     API Cost Out: ${rate_out} per 1000 Tokens\n" 
                        f"     Tokens In: {total_tokens_in} - Cost: ${cost_in:.4f}\n"
                        f"     Tokens Out: {total_tokens_out} - Cost: ${cost_out:.4f}\n"
                        f"     Images Processed: {n_images}\n"
                        f"     Total Cost: ${total_cost:.4f}")
        
        add_to_expense_report(dir_home, data)
        logger.info(cost_summary)
        return total_cost

    else:
        return None           #TODO add config tests to expense_report

@st.cache_data
def summarize_expense_report(path_expense_report):
    # Initialize counters and sums
    run_count = 0
    total_cost_sum = 0
    tokens_in_sum = 0
    tokens_out_sum = 0
    rate_in_sum = 0
    rate_out_sum = 0
    cost_in_sum = 0
    cost_out_sum = 0
    n_images_sum = 0
    # ,'ocr_cost','ocr_tokens_in', 'ocr_tokens_out'
    ocr_cost_sum = 0
    ocr_tokens_in_sum = 0
    ocr_tokens_out_sum = 0

    api_version_counts = Counter()

    # Try to read the CSV file into a DataFrame
    try:
        df = pd.read_csv(path_expense_report)

        # Process each row in the DataFrame
        for index, row in df.iterrows():
            run_count += 1
            total_cost_sum += row['total_cost'] + row['ocr_cost']
            tokens_in_sum += row['tokens_in']
            tokens_out_sum += row['tokens_out']
            rate_in_sum += row['rate_in']
            rate_out_sum += row['rate_out']
            cost_in_sum += row['cost_in']
            cost_out_sum += row['cost_out']
            n_images_sum += row['n_images']
            ocr_cost_sum += row['ocr_cost']
            ocr_tokens_in_sum += row['ocr_tokens_in']
            ocr_tokens_out_sum += row['ocr_tokens_out']
            api_version_counts[row['api_version']] += 1

    except FileNotFoundError:
        print(f"The file {path_expense_report} does not exist.")
        return None

    # Calculate API version percentages
    api_version_percentages = {version: (count / run_count) * 100 for version, count in api_version_counts.items()}

    # Calculate cost per image for each API version
    cost_per_image_dict = {}
    for version, count in api_version_counts.items():
        total_cost = df[df['api_version'] == version]['total_cost'].sum()
        n_images = df[df['api_version'] == version]['n_images'].sum()
        cost_per_image = total_cost / n_images if n_images > 0 else 0
        cost_per_image_dict[version] = cost_per_image

    # Return the DataFrame and all summaries
    return {
        'run_count': run_count,
        'total_cost_sum': total_cost_sum,
        'tokens_in_sum': tokens_in_sum,
        'tokens_out_sum': tokens_out_sum,
        'rate_in_sum': rate_in_sum,
        'rate_out_sum': rate_out_sum,
        'cost_in_sum': cost_in_sum,
        'cost_out_sum': cost_out_sum,
        'ocr_cost_sum': ocr_cost_sum,
        'ocr_tokens_in_sum': ocr_tokens_in_sum,
        'ocr_tokens_out_sum': ocr_tokens_out_sum,
        'n_images_sum':n_images_sum,
        'api_version_percentages': api_version_percentages,
        'cost_per_image': cost_per_image_dict
    }, df

def calculate_cost(LLM_version, path_api_cost, total_tokens_in, total_tokens_out):
    # Load the rates from the YAML file
    with open(path_api_cost, 'r') as file:
        cost_data = yaml.safe_load(file)
    
    # Get the rates for the specified LLM version
    if LLM_version in cost_data:
        rates = cost_data[LLM_version]
        cost_in = rates['in'] * (total_tokens_in/1000)
        cost_out = rates['out'] * (total_tokens_out/1000)
        total_cost = cost_in + cost_out
    else:
        raise ValueError(f"LLM version {LLM_version} not found in the cost data")
    
    return cost_in, cost_out, total_cost, rates['in'], rates['out']

def create_google_ocr_yaml_config(output_file, dir_images_local, dir_output):
    # Define the configuration dictionary
    config = {
        'leafmachine': {
            'LLM_version': 'PaLM 2',
            'archival_component_detector': {
                'detector_iteration': 'PREP_final',
                'detector_type': 'Archival_Detector',
                'detector_version': 'PREP_final',
                'detector_weights': 'best.pt',
                'do_save_prediction_overlay_images': True,
                'ignore_objects_for_overlay': [],
                'minimum_confidence_threshold': 0.5
            },
            'cropped_components': {
                'binarize_labels': False,
                'binarize_labels_skeletonize': False,
                'do_save_cropped_annotations': True,
                'save_cropped_annotations': ['label', 'barcode'],
                'save_per_annotation_class': True,
                'save_per_image': False
            },
            'data': {
                'do_apply_conversion_factor': False,
                'include_darwin_core_data_from_combined_file': False,
                'save_individual_csv_files_landmarks': False,
                'save_individual_csv_files_measurements': False,
                'save_individual_csv_files_rulers': False,
                'save_individual_efd_files': False,
                'save_json_measurements': False,
                'save_json_rulers': False
            },
            'do': {
                'check_for_corrupt_images_make_vertical': True,
                'check_for_illegal_filenames': False
            },
            'logging': {
                'log_level': None
            },
            'modules': {
                'specimen_crop': True
            },
            'overlay': {
                'alpha_transparency_archival': 0.3,
                'alpha_transparency_plant': 0,
                'alpha_transparency_seg_partial_leaf': 0.3,
                'alpha_transparency_seg_whole_leaf': 0.4,
                'ignore_archival_detections_classes': [],
                'ignore_landmark_classes': [],
                'ignore_plant_detections_classes': ['leaf_whole', 'specimen'],
                'line_width_archival': 12,
                'line_width_efd': 12,
                'line_width_plant': 12,
                'line_width_seg': 12,
                'overlay_background_color': 'black',
                'overlay_dpi': 300,
                'save_overlay_to_jpgs': True,
                'save_overlay_to_pdf': False,
                'show_archival_detections': True,
                'show_landmarks': True,
                'show_plant_detections': True,
                'show_segmentations': True
            },
            'print': {
                'optional_warnings': True,
                'verbose': True
            },
            'project': {
                'batch_size': 500,
                'build_new_embeddings_database': False,
                'catalog_numerical_only': False,
                'continue_run_from_partial_xlsx': '',
                'delete_all_temps': False,
                'delete_temps_keep_VVE': False,
                'dir_images_local': dir_images_local,
                'dir_output': dir_output,
                'embeddings_database_name': 'SLTP_UM_AllAsiaMinimalInRegion',
                'image_location': 'local',
                'num_workers': 1,
                'path_to_domain_knowledge_xlsx': '',
                'prefix_removal': '',
                'prompt_version': 'Version 2 PaLM 2',
                'run_name': 'google_vision_ocr_test',
                'suffix_removal': '',
                'use_domain_knowledge': False
            },
            'use_RGB_label_images': False
        }
    }
    # Generate the YAML string from the data structure
    validate_dir(os.path.dirname(output_file))
    yaml_str = yaml.dump(config, sort_keys=False)

    # Write the YAML string to a file
    with open(output_file, 'w') as file:
        file.write(yaml_str)

def test_GPU():
    info = []
    success = False

    if torch.cuda.is_available():
        num_gpus = torch.cuda.device_count()
        info.append(f"Number of GPUs: {num_gpus}")

        for i in range(num_gpus):
            gpu = torch.cuda.get_device_properties(i)
            info.append(f"GPU {i}: {gpu.name}")

        success = True
    else:
        info.append("No GPU found!")
        info.append("LeafMachine2 collages will run slowly, trOCR may not be available.")

    return success, info


# def load_cfg(pathToCfg):
#     try:
#         with open(os.path.join(pathToCfg,"LeafMachine2.yaml"), "r") as ymlfile:
#             cfg = yaml.full_load(ymlfile)
#     except:
#         with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)),"LeafMachine2.yaml"), "r") as ymlfile:
#             cfg = yaml.full_load(ymlfile)
#     return cfg

# def load_cfg_VV(pathToCfg):
#     try:
#         with open(os.path.join(pathToCfg,"VoucherVision.yaml"), "r") as ymlfile:
#             cfg = yaml.full_load(ymlfile)
#     except:
#         with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)),"VoucherVision.yaml"), "r") as ymlfile:
#             cfg = yaml.full_load(ymlfile)
#     return cfg

def load_cfg(pathToCfg, system='LeafMachine2'):
    if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
        raise ValueError("Invalid system. Expected 'LeafMachine2', 'VoucherVision' or 'SpecimenCrop'.")

    try:
        with open(os.path.join(pathToCfg, f"{system}.yaml"), "r") as ymlfile:
            cfg = yaml.full_load(ymlfile)
    except:
        with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)), f"{system}.yaml"), "r") as ymlfile:
            cfg = yaml.full_load(ymlfile)
    return cfg


def import_csv(full_path):
    csv_data = pd.read_csv(full_path,sep=',',header=0, low_memory=False, dtype=str)
    return csv_data

def import_tsv(full_path):
    csv_data = pd.read_csv(full_path,sep='\t',header=0, low_memory=False, dtype=str)
    return csv_data

def parse_cfg():
    parser = argparse.ArgumentParser(
            description='Parse inputs to read  config file',
            formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    optional_args = parser._action_groups.pop()
    required_args = parser.add_argument_group('MANDATORY arguments')
    required_args.add_argument('--path-to-cfg',
                                type=str,
                                required=True,
                                help='Path to config file - LeafMachine.yaml. Do not include the file name, just the parent dir.')

    parser._action_groups.append(optional_args)
    args = parser.parse_args()
    return args

def check_for_subdirs(cfg):
    original_in = cfg['leafmachine']['project']['dir_images_local']
    dirs_list = []
    run_name = []
    has_subdirs = False
    if os.path.isdir(original_in):
        # list contents of the directory
        contents = os.listdir(original_in)
        
        # check if any of the contents is a directory
        subdirs = [f for f in contents if os.path.isdir(os.path.join(original_in, f))]
        
        if len(subdirs) > 0:
            print("The directory contains subdirectories:")
            for subdir in subdirs:
                has_subdirs = True
                print(os.path.join(original_in, subdir))
                dirs_list.append(os.path.join(original_in, subdir))
                run_name.append(subdir)
        else:
            print("The directory does not contain any subdirectories.")
            dirs_list.append(original_in)
            run_name.append(cfg['leafmachine']['project']['run_name'])

    else:
        print("The specified path is not a directory.")

    return run_name, dirs_list, has_subdirs

def check_for_subdirs_VV(cfg):
    original_in = cfg['leafmachine']['project']['dir_images_local']
    dirs_list = []
    run_name = []
    has_subdirs = False
    if os.path.isdir(original_in):
        dirs_list.append(original_in)
        run_name.append(os.path.basename(os.path.normpath(original_in)))
        # list contents of the directory
        contents = os.listdir(original_in)
        
        # check if any of the contents is a directory
        subdirs = [f for f in contents if os.path.isdir(os.path.join(original_in, f))]
        
        if len(subdirs) > 0:
            print("The directory contains subdirectories:")
            for subdir in subdirs:
                has_subdirs = True
                print(os.path.join(original_in, subdir))
                dirs_list.append(os.path.join(original_in, subdir))
                run_name.append(subdir)
        else:
            print("The directory does not contain any subdirectories.")
            dirs_list.append(original_in)
            run_name.append(cfg['leafmachine']['project']['run_name'])

    else:
        print("The specified path is not a directory.")

    return run_name, dirs_list, has_subdirs

def get_datetime():
    day = "_".join([str(datetime.datetime.now().strftime("%Y")),str(datetime.datetime.now().strftime("%m")),str(datetime.datetime.now().strftime("%d"))])
    time = "-".join([str(datetime.datetime.now().strftime("%H")),str(datetime.datetime.now().strftime("%M")),str(datetime.datetime.now().strftime("%S"))])
    new_time = "__".join([day,time])
    return new_time

def save_config_file(cfg, logger, Dirs):
    logger.info("Save config file")
    name_yaml = ''.join([Dirs.run_name,'.yaml'])
    write_yaml(cfg, os.path.join(Dirs.path_config_file, name_yaml))

def write_yaml(cfg, path_cfg):
    with open(path_cfg, 'w') as file:
        yaml.dump(cfg, file, sort_keys=False)

def split_into_batches(Project, logger, cfg):
    logger.name = 'Creating Batches'
    n_batches, n_images = Project.process_in_batches(cfg)
    m = f'Created {n_batches} Batches to Process {n_images} Images'
    logger.info(m)
    return Project, n_batches, m 

def make_images_in_dir_vertical(dir_images_unprocessed, cfg):
    skip_vertical = cfg['leafmachine']['do']['skip_vertical']
    if cfg['leafmachine']['do']['check_for_corrupt_images_make_vertical']:
        n_rotate = 0
        n_corrupt = 0
        n_total = len(os.listdir(dir_images_unprocessed))
        for image_name_jpg in tqdm(os.listdir(dir_images_unprocessed), desc=f'{bcolors.BOLD}     Checking Image Dimensions{bcolors.ENDC}',colour="cyan",position=0,total = n_total):
            if image_name_jpg.endswith((".jpg",".JPG",".jpeg",".JPEG")):
                try:
                    image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
                    if not skip_vertical:
                        h, w, img_c = image.shape
                        image, img_h, img_w, did_rotate = make_image_vertical(image, h, w, do_rotate_180=False)
                        if did_rotate:
                            n_rotate += 1
                    cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
                except:
                    n_corrupt +=1
                    os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
            # TODO check that below works as intended 
            elif image_name_jpg.endswith((".tiff",".tif",".png",".PNG",".TIFF",".TIF",".jp2",".JP2",".bmp",".BMP",".dib",".DIB")):
                try:
                    image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
                    if not skip_vertical:
                        h, w, img_c = image.shape
                        image, img_h, img_w, did_rotate = make_image_vertical(image, h, w, do_rotate_180=False)
                        if did_rotate:
                            n_rotate += 1
                    image_name_jpg = '.'.join([image_name_jpg.split('.')[0], 'jpg'])
                    cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
                except:
                    n_corrupt +=1
                    os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
        m = ''.join(['Number of Images Rotated: ', str(n_rotate)])
        Print_Verbose(cfg, 2, m).bold()
        m2 = ''.join(['Number of Images Corrupted: ', str(n_corrupt)])
        if n_corrupt > 0:
            Print_Verbose(cfg, 2, m2).warning
        else:
            Print_Verbose(cfg, 2, m2).bold

def make_image_vertical(image, h, w, do_rotate_180):
    did_rotate = False
    if do_rotate_180:
        # try:
        image = cv2.rotate(image, cv2.ROTATE_180)
        img_h, img_w, img_c = image.shape
        did_rotate = True
        # print("      Rotated 180")
    else:
        if h < w:
            # try:
            image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
            img_h, img_w, img_c = image.shape
            did_rotate = True
            # print("      Rotated 90 CW")
        elif h >= w:
            image = image
            img_h = h
            img_w = w
            # print("      Not Rotated")
    return image, img_h, img_w, did_rotate
    

def make_image_horizontal(image, h, w, do_rotate_180):
    if h > w:
        if do_rotate_180:
            image = cv2.rotate(image, cv2.ROTATE_180)
        return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE), w, h, True
    return image, w, h, False

def make_images_in_dir_horizontal(dir_images_unprocessed, cfg):
    # if cfg['leafmachine']['do']['check_for_corrupt_images_make_horizontal']:
    n_rotate = 0
    n_corrupt = 0
    n_total = len(os.listdir(dir_images_unprocessed))
    for image_name_jpg in tqdm(os.listdir(dir_images_unprocessed), desc=f'{bcolors.BOLD}     Checking Image Dimensions{bcolors.ENDC}', colour="cyan", position=0, total=n_total):
        if image_name_jpg.endswith((".jpg",".JPG",".jpeg",".JPEG")):
            try:
                image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
                h, w, img_c = image.shape
                image, img_h, img_w, did_rotate = make_image_horizontal(image, h, w, do_rotate_180=False)
                if did_rotate:
                    n_rotate += 1
                cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
            except:
                n_corrupt +=1
                os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
        # TODO check that below works as intended 
        elif image_name_jpg.endswith((".tiff",".tif",".png",".PNG",".TIFF",".TIF",".jp2",".JP2",".bmp",".BMP",".dib",".DIB")):
            try:
                image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
                h, w, img_c = image.shape
                image, img_h, img_w, did_rotate = make_image_horizontal(image, h, w, do_rotate_180=False)
                if did_rotate:
                    n_rotate += 1
                image_name_jpg = '.'.join([image_name_jpg.split('.')[0], 'jpg'])
                cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
            except:
                n_corrupt +=1
                os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
    m = ''.join(['Number of Images Rotated: ', str(n_rotate)])
    print(m)
    # Print_Verbose(cfg, 2, m).bold()
    m2 = ''.join(['Number of Images Corrupted: ', str(n_corrupt)])
    print(m2)


@dataclass
class Print_Verbose_Error():
    cfg: str = ''
    indent_level: int = 0
    message: str = ''
    error: str = ''

    def __init__(self, cfg,indent_level,message,error) -> None:
        self.cfg = cfg
        self.indent_level = indent_level
        self.message = message
        self.error = error

    def print_error_to_console(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['optional_warnings']:
            print(f"{bcolors.FAIL}{white_space}{self.message} ERROR: {self.error}{bcolors.ENDC}")

    def print_warning_to_console(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['optional_warnings']:
            print(f"{bcolors.WARNING}{white_space}{self.message} ERROR: {self.error}{bcolors.ENDC}")

@dataclass
class Print_Verbose():
    cfg: str = ''
    indent_level: int = 0
    message: str = ''

    def __init__(self, cfg, indent_level, message) -> None:
        self.cfg = cfg
        self.indent_level = indent_level
        self.message = message

    def bold(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{bcolors.BOLD}{white_space}{self.message}{bcolors.ENDC}")

    def green(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{bcolors.OKGREEN}{white_space}{self.message}{bcolors.ENDC}")

    def cyan(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{bcolors.OKCYAN}{white_space}{self.message}{bcolors.ENDC}")

    def blue(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{bcolors.OKBLUE}{white_space}{self.message}{bcolors.ENDC}")

    def warning(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{bcolors.WARNING}{white_space}{self.message}{bcolors.ENDC}")

    def plain(self):
        white_space = " " * 5 * self.indent_level
        if self.cfg['leafmachine']['print']['verbose']:
            print(f"{white_space}{self.message}")

def print_main_start(message):
    indent_level = 1
    white_space = " " * 5 * indent_level
    end = " " * int(80 - len(message) - len(white_space))
    # end_white_space = " " * end
    blank = " " * 80
    print(f"{bcolors.CBLUEBG2}{blank}{bcolors.ENDC}")
    print(f"{bcolors.CBLUEBG2}{white_space}{message}{end}{bcolors.ENDC}")
    print(f"{bcolors.CBLUEBG2}{blank}{bcolors.ENDC}")

def print_main_success(message):
    indent_level = 1
    white_space = " " * 5 * indent_level
    end = " " * int(80 - len(message) - len(white_space))
    blank = " " * 80
    # end_white_space = " " * end
    print(f"{bcolors.CGREENBG2}{blank}{bcolors.ENDC}")
    print(f"{bcolors.CGREENBG2}{white_space}{message}{end}{bcolors.ENDC}")
    print(f"{bcolors.CGREENBG2}{blank}{bcolors.ENDC}")

def print_main_warn(message):
    indent_level = 1
    white_space = " " * 5 * indent_level
    end = " " * int(80 - len(message) - len(white_space))
    # end_white_space = " " * end
    blank = " " * 80
    print(f"{bcolors.CYELLOWBG2}{blank}{bcolors.ENDC}")
    print(f"{bcolors.CYELLOWBG2}{white_space}{message}{end}{bcolors.ENDC}")
    print(f"{bcolors.CYELLOWBG2}{blank}{bcolors.ENDC}")

def print_main_fail(message):
    indent_level = 1
    white_space = " " * 5 * indent_level
    end = " " * int(80 - len(message) - len(white_space))
    # end_white_space = " " * end
    blank = " " * 80
    print(f"{bcolors.CREDBG2}{blank}{bcolors.ENDC}")
    print(f"{bcolors.CREDBG2}{white_space}{message}{end}{bcolors.ENDC}")
    print(f"{bcolors.CREDBG2}{blank}{bcolors.ENDC}")

def print_main_info(message):
    indent_level = 2
    white_space = " " * 5 * indent_level
    end = " " * int(80 - len(message) - len(white_space))
    # end_white_space = " " * end
    print(f"{bcolors.CGREYBG}{white_space}{message}{end}{bcolors.ENDC}")
    
# def report_config(dir_home, cfg_file_path):
#     print_main_start("Loading Configuration File")
#     if cfg_file_path == None:
#         print_main_info(''.join([os.path.join(dir_home, 'LeafMachine2.yaml')]))
#     elif cfg_file_path == 'test_installation':
#         print_main_info(''.join([os.path.join(dir_home, 'demo','LeafMachine2_demo.yaml')]))
#     else:
#         print_main_info(cfg_file_path)

# def report_config_VV(dir_home, cfg_file_path):
#     print_main_start("Loading Configuration File")
#     if cfg_file_path == None:
#         print_main_info(''.join([os.path.join(dir_home, 'VoucherVision.yaml')]))
#     elif cfg_file_path == 'test_installation':
#         print_main_info(''.join([os.path.join(dir_home, 'demo','VoucherVision_demo.yaml')]))
#     else:
#         print_main_info(cfg_file_path)

def report_config(dir_home, cfg_file_path, system='VoucherVision'):
    print_main_start("Loading Configuration File")
    
    if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
        raise ValueError("Invalid system. Expected 'LeafMachine2' or 'VoucherVision' or 'SpecimenCrop'.")
    
    if cfg_file_path == None:
        print_main_info(''.join([os.path.join(dir_home, f'{system}.yaml')]))
    elif cfg_file_path == 'test_installation':
        print_main_info(''.join([os.path.join(dir_home, 'demo', f'{system}_demo.yaml')]))
    else:
        print_main_info(cfg_file_path)


def make_file_names_valid(dir, cfg):
    if cfg['leafmachine']['do']['check_for_illegal_filenames']:
        n_total = len(os.listdir(dir))
        for file in tqdm(os.listdir(dir), desc=f'{bcolors.HEADER}     Removing illegal characters from file names{bcolors.ENDC}',colour="cyan",position=0,total = n_total):
            name = Path(file).stem
            ext = Path(file).suffix
            name_cleaned = re.sub(r"[^a-zA-Z0-9_-]","-",name)
            name_new = ''.join([name_cleaned,ext])
            i = 0
            try:
                os.rename(os.path.join(dir,file), os.path.join(dir,name_new))
            except:
                while os.path.exists(os.path.join(dir,name_new)):
                    i += 1
                    name_new = '_'.join([name_cleaned, str(i), ext])
                os.rename(os.path.join(dir,file), os.path.join(dir,name_new))

# def load_config_file(dir_home, cfg_file_path):
#     if cfg_file_path == None: # Default path
#         return load_cfg(dir_home)
#     else:
#         if cfg_file_path == 'test_installation':
#             path_cfg = os.path.join(dir_home,'demo','LeafMachine2_demo.yaml')                     
#             return get_cfg_from_full_path(path_cfg)
#         else: # Custom path
#             return get_cfg_from_full_path(cfg_file_path)
        
# def load_config_file_VV(dir_home, cfg_file_path):
#     if cfg_file_path == None: # Default path
#         return load_cfg_VV(dir_home)
#     else:
#         if cfg_file_path == 'test_installation':
#             path_cfg = os.path.join(dir_home,'demo','VoucherVision_demo.yaml')                     
#             return get_cfg_from_full_path(path_cfg)
#         else: # Custom path
#             return get_cfg_from_full_path(cfg_file_path)

def load_config_file(dir_home, cfg_file_path, system='LeafMachine2'):
    if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
        raise ValueError("Invalid system. Expected 'LeafMachine2' or 'VoucherVision' or 'SpecimenCrop'.")

    if cfg_file_path is None:  # Default path
        if system == 'LeafMachine2':
            return load_cfg(dir_home, system='LeafMachine2')  # For LeafMachine2

        elif system == 'VoucherVision': # VoucherVision
            return load_cfg(dir_home, system='VoucherVision')  # For VoucherVision

        elif system == 'SpecimenCrop': # SpecimenCrop
            return load_cfg(dir_home, system='SpecimenCrop')  # For SpecimenCrop

    else:
        if cfg_file_path == 'test_installation':
            path_cfg = os.path.join(dir_home, 'demo', f'{system}_demo.yaml')                     
            return get_cfg_from_full_path(path_cfg)
        else:  # Custom path
            return get_cfg_from_full_path(cfg_file_path)

        
def load_config_file_testing(dir_home, cfg_file_path):
    if cfg_file_path == None: # Default path
        return load_cfg(dir_home)
    else:
        if cfg_file_path == 'test_installation':
            path_cfg = os.path.join(dir_home,'demo','demo.yaml')                     
            return get_cfg_from_full_path(path_cfg)
        else: # Custom path
            return get_cfg_from_full_path(cfg_file_path)

def subset_dir_images(cfg, Project, Dirs):
    if cfg['leafmachine']['project']['process_subset_of_images']:
        dir_images_subset = cfg['leafmachine']['project']['dir_images_subset']
        num_images_per_species = cfg['leafmachine']['project']['n_images_per_species']
        if cfg['leafmachine']['project']['species_list'] is not None:
            species_list = import_csv(cfg['leafmachine']['project']['species_list'])
            species_list = species_list.iloc[:, 0].tolist()
        else:
            species_list = None

        validate_dir(dir_images_subset)

        species_counts = {}
        filenames = os.listdir(Project.dir_images)
        random.shuffle(filenames)
        for filename in filenames:
            species_name = filename.split('.')[0]
            species_name = species_name.split('_')[2:]
            species_name = '_'.join([species_name[0], species_name[1], species_name[2]])

            if (species_list is None) or ((species_name in species_list) and (species_list is not None)):
            
                if species_name not in species_counts:
                    species_counts[species_name] = 0
                
                if species_counts[species_name] < num_images_per_species:
                    species_counts[species_name] += 1
                    src_path = os.path.join(Project.dir_images, filename)
                    dest_path = os.path.join(dir_images_subset, filename)
                    shutil.copy(src_path, dest_path)
        
        Project.dir_images = dir_images_subset
        
        subset_csv_name = os.path.join(Dirs.dir_images_subset, '.'.join([Dirs.run_name, 'csv']))
        df = pd.DataFrame({'species_name': list(species_counts.keys()), 'count': list(species_counts.values())})
        df.to_csv(subset_csv_name, index=False)
        return Project
    else:
        return Project

'''# Define function to be executed by each worker
def worker_crop(rank, cfg, dir_home, Project, Dirs):
    # Set worker seed based on rank
    np.random.seed(rank)
    # Call function for this worker
    crop_detections_from_images(cfg, dir_home, Project, Dirs)

def crop_detections_from_images(cfg, dir_home, Project, Dirs):
    num_workers = 6
    
    # Initialize and start worker processes
    processes = []
    for rank in range(num_workers):
        p = mp.Process(target=worker_crop, args=(rank, cfg, dir_home, Project, Dirs))
        p.start()
        processes.append(p)

    # Wait for all worker processes to finish
    for p in processes:
        p.join()'''

def crop_detections_from_images_worker_VV(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels):
    try:
        full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
    except:
        full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))

    try:
        archival = analysis['Detections_Archival_Components']
        has_archival = True
    except: 
        has_archival = False

    try:
        plant = analysis['Detections_Plant_Components']
        has_plant = True
    except: 
        has_plant = False

    if has_archival and (save_per_image or save_per_class):
        crop_component_from_yolo_coords_VV('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
 
def crop_detections_from_images_worker(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels):
    try:
        full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
    except:
        full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))

    try:
        archival = analysis['Detections_Archival_Components']
        has_archival = True
    except: 
        has_archival = False

    try:
        plant = analysis['Detections_Plant_Components']
        has_plant = True
    except: 
        has_plant = False

    if has_archival and (save_per_image or save_per_class):
        crop_component_from_yolo_coords('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
    if has_plant and (save_per_image or save_per_class):
        crop_component_from_yolo_coords('PLANT', Dirs, analysis, plant, full_image, filename, save_per_image, save_per_class, save_list)


def crop_detections_from_images(cfg, logger, dir_home, Project, Dirs, batch_size=50):
    t2_start = perf_counter()
    logger.name = 'Crop Components'
    
    if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
        detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
        logger.info(f"Cropping {detections} components from images")

        save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
        save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
        save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
        try:
            binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
        except:
            binarize_labels = False
        if cfg['leafmachine']['project']['batch_size'] is None:
            batch_size = 50
        else:
            batch_size = int(cfg['leafmachine']['project']['batch_size'])
        if cfg['leafmachine']['project']['num_workers'] is None:
            num_workers = 4 
        else:
            num_workers = int(cfg['leafmachine']['project']['num_workers'])

        if binarize_labels:
            save_per_class = True

        with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
            futures = []
            for i in range(0, len(Project.project_data), batch_size):
                batch = list(Project.project_data.items())[i:i+batch_size]
                # print(f'Cropping Detections from Images {i} to {i+batch_size}')
                logger.info(f'Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
                for filename, analysis in batch:
                    if len(analysis) != 0:
                        futures.append(executor.submit(crop_detections_from_images_worker, filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels))

                for future in concurrent.futures.as_completed(futures):
                    pass
                futures.clear()

    t2_stop = perf_counter()
    logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")

def crop_detections_from_images_VV(cfg, logger, dir_home, Project, Dirs, batch_size=50):
    t2_start = perf_counter()
    logger.name = 'Crop Components'

    
    if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
        detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
        logger.info(f"Cropping {detections} components from images")

        save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
        save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
        save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
        binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
        if cfg['leafmachine']['project']['batch_size'] is None:
            batch_size = 50
        else:
            batch_size = int(cfg['leafmachine']['project']['batch_size'])
        if cfg['leafmachine']['project']['num_workers'] is None:
            num_workers = 4 
        else:
            num_workers = int(cfg['leafmachine']['project']['num_workers'])

        if binarize_labels:
            save_per_class = True

        with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
            futures = []
            for i in range(0, len(Project.project_data), batch_size):
                batch = list(Project.project_data.items())[i:i+batch_size]
                # print(f'Cropping Detections from Images {i} to {i+batch_size}')
                logger.info(f'Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
                for filename, analysis in batch:
                    if len(analysis) != 0:
                        futures.append(executor.submit(crop_detections_from_images_worker_VV, filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels))

                for future in concurrent.futures.as_completed(futures):
                    pass
                futures.clear()

    t2_stop = perf_counter()
    logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")
# def crop_detections_from_images_VV(cfg, logger, dir_home, Project, Dirs, batch_size=50):
#     t2_start = perf_counter()
#     logger.name = 'Crop Components'
    
#     if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
#         detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
#         logger.info(f"Cropping {detections} components from images")

#         save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
#         save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
#         save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
#         binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
#         if cfg['leafmachine']['project']['batch_size'] is None:
#             batch_size = 50
#         else:
#             batch_size = int(cfg['leafmachine']['project']['batch_size'])

#         if binarize_labels:
#             save_per_class = True

#         for i in range(0, len(Project.project_data), batch_size):
#             batch = list(Project.project_data.items())[i:i+batch_size]
#             logger.info(f"Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]")
#             for filename, analysis in batch:
#                 if len(analysis) != 0:
#                     crop_detections_from_images_worker_VV(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels)

#     t2_stop = perf_counter()
#     logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")


# def crop_detections_from_images_SpecimenCrop(cfg, logger, dir_home, Project, Dirs, original_img_dir=None, batch_size=50):
#     t2_start = perf_counter()
#     logger.name = 'Crop Components --- Specimen Crop'
    
#     if cfg['leafmachine']['modules']['specimen_crop']:
#         # save_list = ['ruler', 'barcode', 'colorcard', 'label', 'map', 'envelope', 'photo', 'attached_item', 'weights',
#         #               'leaf_whole', 'leaf_partial', 'leaflet', 'seed_fruit_one', 'seed_fruit_many', 'flower_one', 'flower_many', 'bud', 'specimen', 'roots', 'wood']
#         save_list = cfg['leafmachine']['cropped_components']['include_these_objects_in_specimen_crop']

#         logger.info(f"Cropping to include {save_list} components from images")

#         if cfg['leafmachine']['project']['batch_size'] is None:
#             batch_size = 50
#         else:
#             batch_size = int(cfg['leafmachine']['project']['batch_size'])
#         if cfg['leafmachine']['project']['num_workers'] is None:
#             num_workers = 4 
#         else:
#             num_workers = int(cfg['leafmachine']['project']['num_workers'])

#         with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
#             futures = []
#             for i in range(0, len(Project.project_data), batch_size):
#                 batch = list(Project.project_data.items())[i:i+batch_size]
#                 # print(f'Cropping Detections from Images {i} to {i+batch_size}')
#                 logger.info(f'Cropping {save_list} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
#                 for filename, analysis in batch:
#                     if len(analysis) != 0:
#                         futures.append(executor.submit(crop_detections_from_images_worker_SpecimenCrop, filename, analysis, Project, Dirs, save_list, original_img_dir))

#                 for future in concurrent.futures.as_completed(futures):
#                     pass
#                 futures.clear()

#     t2_stop = perf_counter()
#     logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")

'''
# Single threaded
def crop_detections_from_images(cfg, dir_home, Project, Dirs):
    if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
        save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
        save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
        save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
        binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
        if binarize_labels:
            save_per_class = True

        for filename, analysis in  tqdm(Project.project_data.items(), desc=f'{bcolors.BOLD}     Cropping Detections from Images{bcolors.ENDC}',colour="cyan",position=0,total = len(Project.project_data.items())):
            if len(analysis) != 0:
                try:
                    full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
                except:
                    full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))

                try:
                    archival = analysis['Detections_Archival_Components']
                    has_archival = True
                except: 
                    has_archival = False

                try:
                    plant = analysis['Detections_Plant_Components']
                    has_plant = True
                except: 
                    has_plant = False

                if has_archival and (save_per_image or save_per_class):
                    crop_component_from_yolo_coords('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
                if has_plant and (save_per_image or save_per_class):
                    crop_component_from_yolo_coords('PLANT', Dirs, analysis, plant, full_image, filename, save_per_image, save_per_class, save_list)
'''


def process_detections(success, save_list, detections, detection_type, height, width, min_x, min_y, max_x, max_y):
    for detection in detections:
        detection_class = detection[0]
        detection_class = set_index_for_annotation(detection_class, detection_type)

        if (detection_class in save_list) or ('save_all' in save_list):
            location = yolo_to_position_ruler(detection, height, width)
            ruler_polygon = [
                (location[1], location[2]), 
                (location[3], location[2]), 
                (location[3], location[4]), 
                (location[1], location[4])
            ]

            x_coords = [x for x, y in ruler_polygon]
            y_coords = [y for x, y in ruler_polygon]

            min_x = min(min_x, *x_coords)
            min_y = min(min_y, *y_coords)
            max_x = max(max_x, *x_coords)
            max_y = max(max_y, *y_coords)
            success = True

    return min_x, min_y, max_x, max_y, success


def crop_component_from_yolo_coords_VV(anno_type, Dirs, analysis, all_detections, full_image, filename, save_per_image, save_per_class, save_list):
    height = analysis['height']
    width = analysis['width']

    # Initialize a list to hold all the cropped images
    cropped_images = []

    if len(all_detections) < 1:
        print('     MAKE THIS HAVE AN EMPTY PLACEHOLDER') # TODO ###################################################################################
    else:
        for detection in all_detections:
            detection_class = detection[0]
            detection_class = set_index_for_annotation(detection_class, anno_type)

            if (detection_class in save_list) or ('save_all' in save_list):

                location = yolo_to_position_ruler(detection, height, width)
                ruler_polygon = [(location[1], location[2]), (location[3], location[2]), (location[3], location[4]), (location[1], location[4])]

                x_coords = [x for x, y in ruler_polygon]
                y_coords = [y for x, y in ruler_polygon]

                min_x, min_y = min(x_coords), min(y_coords)
                max_x, max_y = max(x_coords), max(y_coords)

                detection_cropped = full_image[min_y:max_y, min_x:max_x]
                cropped_images.append(detection_cropped)
                loc = '-'.join([str(min_x), str(min_y), str(max_x), str(max_y)])
                detection_cropped_name = '.'.join(['__'.join([filename, detection_class, loc]), 'jpg'])
                # detection_cropped_name = '.'.join([filename,'jpg'])

                # save_per_image
                if (detection_class in save_list) and save_per_image:
                    if detection_class == 'label':
                        detection_class2 = 'label_ind'
                    else:
                        detection_class2 = detection_class
                    dir_destination = os.path.join(Dirs.save_per_image, filename, detection_class2)
                    # print(os.path.join(dir_destination,detection_cropped_name))
                    validate_dir(dir_destination)
                    # cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
                    
                # save_per_class
                if (detection_class in save_list) and save_per_class:
                    if detection_class == 'label':
                        detection_class2 = 'label_ind'
                    else:
                        detection_class2 = detection_class
                    dir_destination = os.path.join(Dirs.save_per_annotation_class, detection_class2)
                    # print(os.path.join(dir_destination,detection_cropped_name))
                    validate_dir(dir_destination)
                    # cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
            else:
                # print(f'detection_class: {detection_class} not in save_list: {save_list}')
                pass

    ### Below creates the LM2 Label Collage image
    # Initialize a list to hold all the acceptable cropped images
    acceptable_cropped_images = []

    for img in cropped_images:
        # Calculate the aspect ratio of the image
        aspect_ratio = min(img.shape[0], img.shape[1]) / max(img.shape[0], img.shape[1])
        # Only add the image to the acceptable list if the aspect ratio is more square than 1:8
        if aspect_ratio >= 1/8:
            acceptable_cropped_images.append(img)

    # Sort acceptable_cropped_images by area (largest first)
    acceptable_cropped_images.sort(key=lambda img: img.shape[0] * img.shape[1], reverse=True)


    # If there are no acceptable cropped images, set combined_image to None or to a placeholder image
    if not acceptable_cropped_images:
        combined_image = None  # Or a placeholder image here
    else:
    #     # Recalculate max_width and total_height for acceptable images
    #     max_width = max(img.shape[1] for img in acceptable_cropped_images)
    #     total_height = sum(img.shape[0] for img in acceptable_cropped_images)

    #     # Now, combine all the acceptable cropped images into a single image
    #     combined_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)

    #     y_offset = 0
    #     for img in acceptable_cropped_images:
    #         combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
    #         y_offset += img.shape[0]
        # Start with the first image
        # Recalculate max_width and total_height for acceptable images
        max_width = max(img.shape[1] for img in acceptable_cropped_images)
        total_height = sum(img.shape[0] for img in acceptable_cropped_images)
        combined_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)

        y_offset = 0
        y_offset_next_row = 0
        x_offset = 0

        # Start with the first image
        combined_image[y_offset:y_offset+acceptable_cropped_images[0].shape[0], :acceptable_cropped_images[0].shape[1]] = acceptable_cropped_images[0]
        y_offset_next_row += acceptable_cropped_images[0].shape[0]

        # Add the second image below the first one
        y_offset = y_offset_next_row
        combined_image[y_offset:y_offset+acceptable_cropped_images[1].shape[0], :acceptable_cropped_images[1].shape[1]] = acceptable_cropped_images[1]
        y_offset_next_row += acceptable_cropped_images[1].shape[0]

        # Create a list to store the images that are too tall for the current row
        too_tall_images = []

        # Now try to fill in to the right with the remaining images
        current_width = acceptable_cropped_images[1].shape[1]

        for img in acceptable_cropped_images[2:]:
            if current_width + img.shape[1] > max_width:
                # If this image doesn't fit, start a new row
                y_offset = y_offset_next_row
                combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
                current_width = img.shape[1]
                y_offset_next_row = y_offset + img.shape[0]
            else:
                # If this image fits, add it to the right
                max_height = y_offset_next_row - y_offset
                if img.shape[0] > max_height:
                    too_tall_images.append(img)
                else:
                    combined_image[y_offset:y_offset+img.shape[0], current_width:current_width+img.shape[1]] = img
                    current_width += img.shape[1]

        # Process the images that were too tall for their rows
        for img in too_tall_images:
            y_offset = y_offset_next_row
            combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
            y_offset_next_row += img.shape[0]

        # Trim the combined_image to remove extra black space
        combined_image = combined_image[:y_offset_next_row]


        # save the combined image
        # if (detection_class in save_list) and save_per_class:
        dir_destination = os.path.join(Dirs.save_per_annotation_class, 'label')
        validate_dir(dir_destination)
        # combined_image_name = '__'.join([filename, detection_class]) + '.jpg'
        combined_image_name = '.'.join([filename,'jpg'])
        cv2.imwrite(os.path.join(dir_destination, combined_image_name), combined_image)

        original_image_name = '.'.join([filename,'jpg'])
        cv2.imwrite(os.path.join(Dirs.save_original, original_image_name), full_image)
        
def create_specimen_collage(cfg, logger, dir_home, Project, Dirs):
    if cfg['leafmachine']['use_RGB_label_images'] == 2:
        # Get all filenames in the save_original directory that end with .jpg or .jpeg
        filenames = [f for f in os.listdir(Dirs.save_original) if f.lower().endswith(('.jpg', '.jpeg'))]

        # Dictionary to group filenames by their file stem (e.g., FMNH_6238)
        grouped_filenames = defaultdict(list)

        for filename in filenames:
            parts = filename.rsplit('_', 1)
            if len(parts) == 2 and parts[1][0].isalnum():
                file_stem = parts[0]
                grouped_filenames[file_stem].append(filename)
            else:
                logger.warning(f"Filename {filename} does not match expected pattern. Skipping.")

        # Process each group of images
        for file_stem, group in grouped_filenames.items():
            # Load all cropped images for the current group
            cropped_images = [cv2.imread(os.path.join(Dirs.save_original, filename)) for filename in group]

            if not cropped_images:
                logger.error(f"No images found for {file_stem}. Skipping collage creation.")
                continue

            # Rotate images so that width is greater than height
            for i, img in enumerate(cropped_images):
                if img.shape[0] > img.shape[1]:  # height > width
                    if cfg['leafmachine']['project']['specimen_rotate']:
                        cropped_images[i] = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
                    else:
                        cropped_images[i] = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)

            # Calculate the maximum width and total height required for the collage
            max_width = max(img.shape[1] for img in cropped_images)
            total_height = sum(img.shape[0] for img in cropped_images)

            # Create a black image with the required dimensions
            collage_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)

            # Stack images on top of each other
            y_offset = 0
            for img in cropped_images:
                collage_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
                y_offset += img.shape[0]

            # Generate the combined filename from the file stem
            collage_filename = f"{file_stem}_collage.jpg"
            
            # Save the collage image
            collage_destination = os.path.join(Dirs.save_per_annotation_class, 'label', collage_filename)
            validate_dir(os.path.dirname(collage_destination))
            cv2.imwrite(collage_destination, collage_image)
            logger.info(f"Saved collage image: {collage_destination}")

            # Save each individual image separately
            for filename in group:
                original_image_name = os.path.basename(filename)
                save_destination = os.path.join(Dirs.save_original, original_image_name)
                validate_dir(os.path.dirname(save_destination))
                cv2.imwrite(save_destination, cv2.imread(os.path.join(Dirs.save_original, filename)))
                logger.info(f"Saved original image: {save_destination}")
        
        # After processing, delete the original images, leaving only the _collage images
        # This is used just in case the HF version puts them there
        # for filename in filenames:
        #     if not filename.endswith('_collage.jpg'):
        #         file_path = os.path.join(Dirs.save_original, filename)
        #         if os.path.exists(file_path):
        #             os.remove(file_path)
        #             logger.info(f"Deleted original image: {file_path}")

def crop_component_from_yolo_coords(anno_type, Dirs, analysis, all_detections, full_image, filename, save_per_image, save_per_class, save_list):
    height = analysis['height']
    width = analysis['width']
    if len(all_detections) < 1:
        print('     MAKE THIS HAVE AN EMPTY PLACEHOLDER') # TODO ###################################################################################
    else:
        for detection in all_detections:
            detection_class = detection[0]
            detection_class = set_index_for_annotation(detection_class, anno_type)

            if (detection_class in save_list) or ('save_all' in save_list):

                location = yolo_to_position_ruler(detection, height, width)
                ruler_polygon = [(location[1], location[2]), (location[3], location[2]), (location[3], location[4]), (location[1], location[4])]

                x_coords = [x for x, y in ruler_polygon]
                y_coords = [y for x, y in ruler_polygon]

                min_x, min_y = min(x_coords), min(y_coords)
                max_x, max_y = max(x_coords), max(y_coords)

                detection_cropped = full_image[min_y:max_y, min_x:max_x]
                loc = '-'.join([str(min_x), str(min_y), str(max_x), str(max_y)])
                detection_cropped_name = '.'.join(['__'.join([filename, detection_class, loc]), 'jpg'])

                # save_per_image
                if (detection_class in save_list) and save_per_image:
                    dir_destination = os.path.join(Dirs.save_per_image, filename, detection_class)
                    # print(os.path.join(dir_destination,detection_cropped_name))
                    validate_dir(dir_destination)
                    cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
                    
                # save_per_class
                if (detection_class in save_list) and save_per_class:
                    dir_destination = os.path.join(Dirs.save_per_annotation_class, detection_class)
                    # print(os.path.join(dir_destination,detection_cropped_name))
                    validate_dir(dir_destination)
                    cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
            else:
                # print(f'detection_class: {detection_class} not in save_list: {save_list}')
                pass

def yolo_to_position_ruler(annotation, height, width):
    return ['ruler', 
        int((annotation[1] * width) - ((annotation[3] * width) / 2)), 
        int((annotation[2] * height) - ((annotation[4] * height) / 2)), 
        int(annotation[3] * width) + int((annotation[1] * width) - ((annotation[3] * width) / 2)), 
        int(annotation[4] * height) + int((annotation[2] * height) - ((annotation[4] * height) / 2))]


class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKCYAN = '\033[96m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    CEND      = '\33[0m'
    CBOLD     = '\33[1m'
    CITALIC   = '\33[3m'
    CURL      = '\33[4m'
    CBLINK    = '\33[5m'
    CBLINK2   = '\33[6m'
    CSELECTED = '\33[7m'

    CBLACK  = '\33[30m'
    CRED    = '\33[31m'
    CGREEN  = '\33[32m'
    CYELLOW = '\33[33m'
    CBLUE   = '\33[34m'
    CVIOLET = '\33[35m'
    CBEIGE  = '\33[36m'
    CWHITE  = '\33[37m'

    CBLACKBG  = '\33[40m'
    CREDBG    = '\33[41m'
    CGREENBG  = '\33[42m'
    CYELLOWBG = '\33[43m'
    CBLUEBG   = '\33[44m'
    CVIOLETBG = '\33[45m'
    CBEIGEBG  = '\33[46m'
    CWHITEBG  = '\33[47m'

    CGREY    = '\33[90m'
    CRED2    = '\33[91m'
    CGREEN2  = '\33[92m'
    CYELLOW2 = '\33[93m'
    CBLUE2   = '\33[94m'
    CVIOLET2 = '\33[95m'
    CBEIGE2  = '\33[96m'
    CWHITE2  = '\33[97m'

    CGREYBG    = '\33[100m'
    CREDBG2    = '\33[101m'
    CGREENBG2  = '\33[102m'
    CYELLOWBG2 = '\33[103m'
    CBLUEBG2   = '\33[104m'
    CVIOLETBG2 = '\33[105m'
    CBEIGEBG2  = '\33[106m'
    CWHITEBG2  = '\33[107m'
    CBLUEBG3   = '\33[112m'


def set_index_for_annotation(cls,annoType):
    if annoType == 'PLANT':
        if cls == 0:
            annoInd = 'Leaf_WHOLE'
        elif cls == 1:
            annoInd = 'Leaf_PARTIAL'
        elif cls == 2:
            annoInd = 'Leaflet'
        elif cls == 3:
            annoInd = 'Seed_Fruit_ONE'
        elif cls == 4:
            annoInd = 'Seed_Fruit_MANY'
        elif cls == 5:
            annoInd = 'Flower_ONE'
        elif cls == 6:
            annoInd = 'Flower_MANY'
        elif cls == 7:
            annoInd = 'Bud'
        elif cls == 8:
            annoInd = 'Specimen'
        elif cls == 9:
            annoInd = 'Roots'
        elif cls == 10:
            annoInd = 'Wood'
    elif annoType == 'ARCHIVAL':
        if cls == 0:
            annoInd = 'Ruler'
        elif cls == 1:
            annoInd = 'Barcode'
        elif cls == 2:
            annoInd = 'Colorcard'
        elif cls == 3:
            annoInd = 'Label'
        elif cls == 4:
            annoInd = 'Map'
        elif cls == 5:
            annoInd = 'Envelope'
        elif cls == 6:
            annoInd = 'Photo'
        elif cls == 7:
            annoInd = 'Attached_item'
        elif cls == 8:
            annoInd = 'Weights'
    return annoInd.lower()
# def set_yaml(path_to_yaml, value):
#     with open('file_to_edit.yaml') as f:
#         doc = yaml.load(f)

#     doc['state'] = state

#     with open('file_to_edit.yaml', 'w') as f:
#         yaml.dump(doc, f)