Spaces:
Running
Running
File size: 63,964 Bytes
87c3140 37a138a 87c3140 1881d06 87c3140 a145e37 e91ac58 87c3140 fc7f534 87c3140 8570ea5 87c3140 a145e37 87c3140 a145e37 e91ac58 87c3140 e91ac58 a145e37 87c3140 e91ac58 a145e37 87c3140 e91ac58 a145e37 e91ac58 87c3140 c824976 87c3140 a145e37 87c3140 a145e37 87c3140 a145e37 87c3140 a145e37 87c3140 e91ac58 87c3140 5590fea 87c3140 e91ac58 87c3140 524a99c 87c3140 524a99c 87c3140 524a99c 87c3140 1881d06 87c3140 1881d06 87c3140 1881d06 87c3140 1881d06 34c6d2f bd72568 87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 |
import os, yaml, datetime, argparse, re, cv2, random, shutil, tiktoken, json, csv
import streamlit as st
from collections import Counter
import pandas as pd
from pathlib import Path
from dataclasses import dataclass
from tqdm import tqdm
import numpy as np
import concurrent.futures
from time import perf_counter
import torch
from collections import defaultdict
try:
from vouchervision.model_maps import ModelMaps
except:
from model_maps import ModelMaps
'''
TIFF --> DNG
Install
https://helpx.adobe.com/camera-raw/using/adobe-dng-converter.html
Read
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_commandline.pdf
'''
# https://stackoverflow.com/questions/287871/how-do-i-print-colored-text-to-the-terminal
def validate_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir, exist_ok=True)
def get_cfg_from_full_path(path_cfg):
with open(path_cfg, "r") as ymlfile:
cfg = yaml.full_load(ymlfile)
return cfg
def num_tokens_from_string(string, encoding_name):
try:
# Ensure the encoding is obtained correctly.
encoding = tiktoken.get_encoding(encoding_name)
# Convert dictionary to string if it is not already a string
if isinstance(string, dict):
string = json.dumps(string, ensure_ascii=False)
# Encode the string and return the number of tokens.
num_tokens = len(encoding.encode(string))
except Exception as e:
# If there's any error, log it and return 0.
print(f"An error occurred: {e}")
num_tokens = 0
return num_tokens
def add_to_expense_report(dir_home, data):
path_expense_report = os.path.join(dir_home, 'expense_report','expense_report.csv')
# Check if the file exists
file_exists = os.path.isfile(path_expense_report)
# Open the file in append mode if it exists, or write mode if it doesn't
mode = 'a' if file_exists else 'w'
with open(path_expense_report, mode=mode, newline='') as file:
writer = csv.writer(file)
# If the file does not exist, write the header first
if not file_exists:
writer.writerow(['run','date','api_version','total_cost', 'n_images', 'tokens_in', 'tokens_out', 'rate_in', 'rate_out', 'cost_in', 'cost_out','ocr_cost','ocr_tokens_in', 'ocr_tokens_out',])
# Write the data row
writer.writerow(data)
def save_token_info_as_csv(Dirs, LLM_version0, path_api_cost, total_tokens_in, total_tokens_out, OCR_cost, OCR_tokens_in, OCR_tokens_out, n_images, dir_home, logger):
if path_api_cost:
LLM_version = ModelMaps.get_version_mapping_cost(LLM_version0)
# Define the CSV file path
csv_file_path = os.path.join(Dirs.path_cost, Dirs.run_name + '.csv')
cost_in, cost_out, total_cost, rate_in, rate_out = calculate_cost(LLM_version, path_api_cost, total_tokens_in, total_tokens_out)
total_cost += OCR_cost
# The data to be written to the CSV file
data = [Dirs.run_name, get_datetime(),LLM_version, total_cost, n_images, total_tokens_in, total_tokens_out, rate_in, rate_out, cost_in, cost_out,OCR_cost, OCR_tokens_in, OCR_tokens_out,]
# Open the file in write mode
with open(csv_file_path, mode='w', newline='') as file:
writer = csv.writer(file)
# Write the header
writer.writerow(['run','date','api_version','total_cost', 'n_images', 'tokens_in', 'tokens_out', 'rate_in', 'rate_out', 'cost_in', 'cost_out','ocr_cost','ocr_tokens_in', 'ocr_tokens_out'])
# Write the data
writer.writerow(data)
# Create a summary string
cost_summary = (f"Cost Summary for {Dirs.run_name}:\n"
f" API Cost In: ${rate_in} per 1000 Tokens\n"
f" API Cost Out: ${rate_out} per 1000 Tokens\n"
f" Tokens In: {total_tokens_in} - Cost: ${cost_in:.4f}\n"
f" Tokens Out: {total_tokens_out} - Cost: ${cost_out:.4f}\n"
f" Images Processed: {n_images}\n"
f" Total Cost: ${total_cost:.4f}")
add_to_expense_report(dir_home, data)
logger.info(cost_summary)
return total_cost
else:
return None #TODO add config tests to expense_report
@st.cache_data
def summarize_expense_report(path_expense_report):
# Initialize counters and sums
run_count = 0
total_cost_sum = 0
tokens_in_sum = 0
tokens_out_sum = 0
rate_in_sum = 0
rate_out_sum = 0
cost_in_sum = 0
cost_out_sum = 0
n_images_sum = 0
# ,'ocr_cost','ocr_tokens_in', 'ocr_tokens_out'
ocr_cost_sum = 0
ocr_tokens_in_sum = 0
ocr_tokens_out_sum = 0
api_version_counts = Counter()
# Try to read the CSV file into a DataFrame
try:
df = pd.read_csv(path_expense_report)
# Process each row in the DataFrame
for index, row in df.iterrows():
run_count += 1
total_cost_sum += row['total_cost'] + row['ocr_cost']
tokens_in_sum += row['tokens_in']
tokens_out_sum += row['tokens_out']
rate_in_sum += row['rate_in']
rate_out_sum += row['rate_out']
cost_in_sum += row['cost_in']
cost_out_sum += row['cost_out']
n_images_sum += row['n_images']
ocr_cost_sum += row['ocr_cost']
ocr_tokens_in_sum += row['ocr_tokens_in']
ocr_tokens_out_sum += row['ocr_tokens_out']
api_version_counts[row['api_version']] += 1
except FileNotFoundError:
print(f"The file {path_expense_report} does not exist.")
return None
# Calculate API version percentages
api_version_percentages = {version: (count / run_count) * 100 for version, count in api_version_counts.items()}
# Calculate cost per image for each API version
cost_per_image_dict = {}
for version, count in api_version_counts.items():
total_cost = df[df['api_version'] == version]['total_cost'].sum()
n_images = df[df['api_version'] == version]['n_images'].sum()
cost_per_image = total_cost / n_images if n_images > 0 else 0
cost_per_image_dict[version] = cost_per_image
# Return the DataFrame and all summaries
return {
'run_count': run_count,
'total_cost_sum': total_cost_sum,
'tokens_in_sum': tokens_in_sum,
'tokens_out_sum': tokens_out_sum,
'rate_in_sum': rate_in_sum,
'rate_out_sum': rate_out_sum,
'cost_in_sum': cost_in_sum,
'cost_out_sum': cost_out_sum,
'ocr_cost_sum': ocr_cost_sum,
'ocr_tokens_in_sum': ocr_tokens_in_sum,
'ocr_tokens_out_sum': ocr_tokens_out_sum,
'n_images_sum':n_images_sum,
'api_version_percentages': api_version_percentages,
'cost_per_image': cost_per_image_dict
}, df
def calculate_cost(LLM_version, path_api_cost, total_tokens_in, total_tokens_out):
# Load the rates from the YAML file
with open(path_api_cost, 'r') as file:
cost_data = yaml.safe_load(file)
# Get the rates for the specified LLM version
if LLM_version in cost_data:
rates = cost_data[LLM_version]
cost_in = rates['in'] * (total_tokens_in/1000)
cost_out = rates['out'] * (total_tokens_out/1000)
total_cost = cost_in + cost_out
else:
raise ValueError(f"LLM version {LLM_version} not found in the cost data")
return cost_in, cost_out, total_cost, rates['in'], rates['out']
def create_google_ocr_yaml_config(output_file, dir_images_local, dir_output):
# Define the configuration dictionary
config = {
'leafmachine': {
'LLM_version': 'PaLM 2',
'archival_component_detector': {
'detector_iteration': 'PREP_final',
'detector_type': 'Archival_Detector',
'detector_version': 'PREP_final',
'detector_weights': 'best.pt',
'do_save_prediction_overlay_images': True,
'ignore_objects_for_overlay': [],
'minimum_confidence_threshold': 0.5
},
'cropped_components': {
'binarize_labels': False,
'binarize_labels_skeletonize': False,
'do_save_cropped_annotations': True,
'save_cropped_annotations': ['label', 'barcode'],
'save_per_annotation_class': True,
'save_per_image': False
},
'data': {
'do_apply_conversion_factor': False,
'include_darwin_core_data_from_combined_file': False,
'save_individual_csv_files_landmarks': False,
'save_individual_csv_files_measurements': False,
'save_individual_csv_files_rulers': False,
'save_individual_efd_files': False,
'save_json_measurements': False,
'save_json_rulers': False
},
'do': {
'check_for_corrupt_images_make_vertical': True,
'check_for_illegal_filenames': False
},
'logging': {
'log_level': None
},
'modules': {
'specimen_crop': True
},
'overlay': {
'alpha_transparency_archival': 0.3,
'alpha_transparency_plant': 0,
'alpha_transparency_seg_partial_leaf': 0.3,
'alpha_transparency_seg_whole_leaf': 0.4,
'ignore_archival_detections_classes': [],
'ignore_landmark_classes': [],
'ignore_plant_detections_classes': ['leaf_whole', 'specimen'],
'line_width_archival': 12,
'line_width_efd': 12,
'line_width_plant': 12,
'line_width_seg': 12,
'overlay_background_color': 'black',
'overlay_dpi': 300,
'save_overlay_to_jpgs': True,
'save_overlay_to_pdf': False,
'show_archival_detections': True,
'show_landmarks': True,
'show_plant_detections': True,
'show_segmentations': True
},
'print': {
'optional_warnings': True,
'verbose': True
},
'project': {
'batch_size': 500,
'build_new_embeddings_database': False,
'catalog_numerical_only': False,
'continue_run_from_partial_xlsx': '',
'delete_all_temps': False,
'delete_temps_keep_VVE': False,
'dir_images_local': dir_images_local,
'dir_output': dir_output,
'embeddings_database_name': 'SLTP_UM_AllAsiaMinimalInRegion',
'image_location': 'local',
'num_workers': 1,
'path_to_domain_knowledge_xlsx': '',
'prefix_removal': '',
'prompt_version': 'Version 2 PaLM 2',
'run_name': 'google_vision_ocr_test',
'suffix_removal': '',
'use_domain_knowledge': False
},
'use_RGB_label_images': False
}
}
# Generate the YAML string from the data structure
validate_dir(os.path.dirname(output_file))
yaml_str = yaml.dump(config, sort_keys=False)
# Write the YAML string to a file
with open(output_file, 'w') as file:
file.write(yaml_str)
def test_GPU():
info = []
success = False
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
info.append(f"Number of GPUs: {num_gpus}")
for i in range(num_gpus):
gpu = torch.cuda.get_device_properties(i)
info.append(f"GPU {i}: {gpu.name}")
success = True
else:
info.append("No GPU found!")
info.append("LeafMachine2 collages will run slowly, trOCR may not be available.")
return success, info
# def load_cfg(pathToCfg):
# try:
# with open(os.path.join(pathToCfg,"LeafMachine2.yaml"), "r") as ymlfile:
# cfg = yaml.full_load(ymlfile)
# except:
# with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)),"LeafMachine2.yaml"), "r") as ymlfile:
# cfg = yaml.full_load(ymlfile)
# return cfg
# def load_cfg_VV(pathToCfg):
# try:
# with open(os.path.join(pathToCfg,"VoucherVision.yaml"), "r") as ymlfile:
# cfg = yaml.full_load(ymlfile)
# except:
# with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)),"VoucherVision.yaml"), "r") as ymlfile:
# cfg = yaml.full_load(ymlfile)
# return cfg
def load_cfg(pathToCfg, system='LeafMachine2'):
if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
raise ValueError("Invalid system. Expected 'LeafMachine2', 'VoucherVision' or 'SpecimenCrop'.")
try:
with open(os.path.join(pathToCfg, f"{system}.yaml"), "r") as ymlfile:
cfg = yaml.full_load(ymlfile)
except:
with open(os.path.join(os.path.dirname(os.path.dirname(pathToCfg)), f"{system}.yaml"), "r") as ymlfile:
cfg = yaml.full_load(ymlfile)
return cfg
def import_csv(full_path):
csv_data = pd.read_csv(full_path,sep=',',header=0, low_memory=False, dtype=str)
return csv_data
def import_tsv(full_path):
csv_data = pd.read_csv(full_path,sep='\t',header=0, low_memory=False, dtype=str)
return csv_data
def parse_cfg():
parser = argparse.ArgumentParser(
description='Parse inputs to read config file',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
optional_args = parser._action_groups.pop()
required_args = parser.add_argument_group('MANDATORY arguments')
required_args.add_argument('--path-to-cfg',
type=str,
required=True,
help='Path to config file - LeafMachine.yaml. Do not include the file name, just the parent dir.')
parser._action_groups.append(optional_args)
args = parser.parse_args()
return args
def check_for_subdirs(cfg):
original_in = cfg['leafmachine']['project']['dir_images_local']
dirs_list = []
run_name = []
has_subdirs = False
if os.path.isdir(original_in):
# list contents of the directory
contents = os.listdir(original_in)
# check if any of the contents is a directory
subdirs = [f for f in contents if os.path.isdir(os.path.join(original_in, f))]
if len(subdirs) > 0:
print("The directory contains subdirectories:")
for subdir in subdirs:
has_subdirs = True
print(os.path.join(original_in, subdir))
dirs_list.append(os.path.join(original_in, subdir))
run_name.append(subdir)
else:
print("The directory does not contain any subdirectories.")
dirs_list.append(original_in)
run_name.append(cfg['leafmachine']['project']['run_name'])
else:
print("The specified path is not a directory.")
return run_name, dirs_list, has_subdirs
def check_for_subdirs_VV(cfg):
original_in = cfg['leafmachine']['project']['dir_images_local']
dirs_list = []
run_name = []
has_subdirs = False
if os.path.isdir(original_in):
dirs_list.append(original_in)
run_name.append(os.path.basename(os.path.normpath(original_in)))
# list contents of the directory
contents = os.listdir(original_in)
# check if any of the contents is a directory
subdirs = [f for f in contents if os.path.isdir(os.path.join(original_in, f))]
if len(subdirs) > 0:
print("The directory contains subdirectories:")
for subdir in subdirs:
has_subdirs = True
print(os.path.join(original_in, subdir))
dirs_list.append(os.path.join(original_in, subdir))
run_name.append(subdir)
else:
print("The directory does not contain any subdirectories.")
dirs_list.append(original_in)
run_name.append(cfg['leafmachine']['project']['run_name'])
else:
print("The specified path is not a directory.")
return run_name, dirs_list, has_subdirs
def get_datetime():
day = "_".join([str(datetime.datetime.now().strftime("%Y")),str(datetime.datetime.now().strftime("%m")),str(datetime.datetime.now().strftime("%d"))])
time = "-".join([str(datetime.datetime.now().strftime("%H")),str(datetime.datetime.now().strftime("%M")),str(datetime.datetime.now().strftime("%S"))])
new_time = "__".join([day,time])
return new_time
def save_config_file(cfg, logger, Dirs):
logger.info("Save config file")
name_yaml = ''.join([Dirs.run_name,'.yaml'])
write_yaml(cfg, os.path.join(Dirs.path_config_file, name_yaml))
def write_yaml(cfg, path_cfg):
with open(path_cfg, 'w') as file:
yaml.dump(cfg, file, sort_keys=False)
def split_into_batches(Project, logger, cfg):
logger.name = 'Creating Batches'
n_batches, n_images = Project.process_in_batches(cfg)
m = f'Created {n_batches} Batches to Process {n_images} Images'
logger.info(m)
return Project, n_batches, m
def make_images_in_dir_vertical(dir_images_unprocessed, cfg):
skip_vertical = cfg['leafmachine']['do']['skip_vertical']
if cfg['leafmachine']['do']['check_for_corrupt_images_make_vertical']:
n_rotate = 0
n_corrupt = 0
n_total = len(os.listdir(dir_images_unprocessed))
for image_name_jpg in tqdm(os.listdir(dir_images_unprocessed), desc=f'{bcolors.BOLD} Checking Image Dimensions{bcolors.ENDC}',colour="cyan",position=0,total = n_total):
if image_name_jpg.endswith((".jpg",".JPG",".jpeg",".JPEG")):
try:
image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
if not skip_vertical:
h, w, img_c = image.shape
image, img_h, img_w, did_rotate = make_image_vertical(image, h, w, do_rotate_180=False)
if did_rotate:
n_rotate += 1
cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
except:
n_corrupt +=1
os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
# TODO check that below works as intended
elif image_name_jpg.endswith((".tiff",".tif",".png",".PNG",".TIFF",".TIF",".jp2",".JP2",".bmp",".BMP",".dib",".DIB")):
try:
image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
if not skip_vertical:
h, w, img_c = image.shape
image, img_h, img_w, did_rotate = make_image_vertical(image, h, w, do_rotate_180=False)
if did_rotate:
n_rotate += 1
image_name_jpg = '.'.join([image_name_jpg.split('.')[0], 'jpg'])
cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
except:
n_corrupt +=1
os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
m = ''.join(['Number of Images Rotated: ', str(n_rotate)])
Print_Verbose(cfg, 2, m).bold()
m2 = ''.join(['Number of Images Corrupted: ', str(n_corrupt)])
if n_corrupt > 0:
Print_Verbose(cfg, 2, m2).warning
else:
Print_Verbose(cfg, 2, m2).bold
def make_image_vertical(image, h, w, do_rotate_180):
did_rotate = False
if do_rotate_180:
# try:
image = cv2.rotate(image, cv2.ROTATE_180)
img_h, img_w, img_c = image.shape
did_rotate = True
# print(" Rotated 180")
else:
if h < w:
# try:
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
img_h, img_w, img_c = image.shape
did_rotate = True
# print(" Rotated 90 CW")
elif h >= w:
image = image
img_h = h
img_w = w
# print(" Not Rotated")
return image, img_h, img_w, did_rotate
def make_image_horizontal(image, h, w, do_rotate_180):
if h > w:
if do_rotate_180:
image = cv2.rotate(image, cv2.ROTATE_180)
return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE), w, h, True
return image, w, h, False
def make_images_in_dir_horizontal(dir_images_unprocessed, cfg):
# if cfg['leafmachine']['do']['check_for_corrupt_images_make_horizontal']:
n_rotate = 0
n_corrupt = 0
n_total = len(os.listdir(dir_images_unprocessed))
for image_name_jpg in tqdm(os.listdir(dir_images_unprocessed), desc=f'{bcolors.BOLD} Checking Image Dimensions{bcolors.ENDC}', colour="cyan", position=0, total=n_total):
if image_name_jpg.endswith((".jpg",".JPG",".jpeg",".JPEG")):
try:
image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
h, w, img_c = image.shape
image, img_h, img_w, did_rotate = make_image_horizontal(image, h, w, do_rotate_180=False)
if did_rotate:
n_rotate += 1
cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
except:
n_corrupt +=1
os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
# TODO check that below works as intended
elif image_name_jpg.endswith((".tiff",".tif",".png",".PNG",".TIFF",".TIF",".jp2",".JP2",".bmp",".BMP",".dib",".DIB")):
try:
image = cv2.imread(os.path.join(dir_images_unprocessed, image_name_jpg))
h, w, img_c = image.shape
image, img_h, img_w, did_rotate = make_image_horizontal(image, h, w, do_rotate_180=False)
if did_rotate:
n_rotate += 1
image_name_jpg = '.'.join([image_name_jpg.split('.')[0], 'jpg'])
cv2.imwrite(os.path.join(dir_images_unprocessed,image_name_jpg), image)
except:
n_corrupt +=1
os.remove(os.path.join(dir_images_unprocessed, image_name_jpg))
m = ''.join(['Number of Images Rotated: ', str(n_rotate)])
print(m)
# Print_Verbose(cfg, 2, m).bold()
m2 = ''.join(['Number of Images Corrupted: ', str(n_corrupt)])
print(m2)
@dataclass
class Print_Verbose_Error():
cfg: str = ''
indent_level: int = 0
message: str = ''
error: str = ''
def __init__(self, cfg,indent_level,message,error) -> None:
self.cfg = cfg
self.indent_level = indent_level
self.message = message
self.error = error
def print_error_to_console(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['optional_warnings']:
print(f"{bcolors.FAIL}{white_space}{self.message} ERROR: {self.error}{bcolors.ENDC}")
def print_warning_to_console(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['optional_warnings']:
print(f"{bcolors.WARNING}{white_space}{self.message} ERROR: {self.error}{bcolors.ENDC}")
@dataclass
class Print_Verbose():
cfg: str = ''
indent_level: int = 0
message: str = ''
def __init__(self, cfg, indent_level, message) -> None:
self.cfg = cfg
self.indent_level = indent_level
self.message = message
def bold(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{bcolors.BOLD}{white_space}{self.message}{bcolors.ENDC}")
def green(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{bcolors.OKGREEN}{white_space}{self.message}{bcolors.ENDC}")
def cyan(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{bcolors.OKCYAN}{white_space}{self.message}{bcolors.ENDC}")
def blue(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{bcolors.OKBLUE}{white_space}{self.message}{bcolors.ENDC}")
def warning(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{bcolors.WARNING}{white_space}{self.message}{bcolors.ENDC}")
def plain(self):
white_space = " " * 5 * self.indent_level
if self.cfg['leafmachine']['print']['verbose']:
print(f"{white_space}{self.message}")
def print_main_start(message):
indent_level = 1
white_space = " " * 5 * indent_level
end = " " * int(80 - len(message) - len(white_space))
# end_white_space = " " * end
blank = " " * 80
print(f"{bcolors.CBLUEBG2}{blank}{bcolors.ENDC}")
print(f"{bcolors.CBLUEBG2}{white_space}{message}{end}{bcolors.ENDC}")
print(f"{bcolors.CBLUEBG2}{blank}{bcolors.ENDC}")
def print_main_success(message):
indent_level = 1
white_space = " " * 5 * indent_level
end = " " * int(80 - len(message) - len(white_space))
blank = " " * 80
# end_white_space = " " * end
print(f"{bcolors.CGREENBG2}{blank}{bcolors.ENDC}")
print(f"{bcolors.CGREENBG2}{white_space}{message}{end}{bcolors.ENDC}")
print(f"{bcolors.CGREENBG2}{blank}{bcolors.ENDC}")
def print_main_warn(message):
indent_level = 1
white_space = " " * 5 * indent_level
end = " " * int(80 - len(message) - len(white_space))
# end_white_space = " " * end
blank = " " * 80
print(f"{bcolors.CYELLOWBG2}{blank}{bcolors.ENDC}")
print(f"{bcolors.CYELLOWBG2}{white_space}{message}{end}{bcolors.ENDC}")
print(f"{bcolors.CYELLOWBG2}{blank}{bcolors.ENDC}")
def print_main_fail(message):
indent_level = 1
white_space = " " * 5 * indent_level
end = " " * int(80 - len(message) - len(white_space))
# end_white_space = " " * end
blank = " " * 80
print(f"{bcolors.CREDBG2}{blank}{bcolors.ENDC}")
print(f"{bcolors.CREDBG2}{white_space}{message}{end}{bcolors.ENDC}")
print(f"{bcolors.CREDBG2}{blank}{bcolors.ENDC}")
def print_main_info(message):
indent_level = 2
white_space = " " * 5 * indent_level
end = " " * int(80 - len(message) - len(white_space))
# end_white_space = " " * end
print(f"{bcolors.CGREYBG}{white_space}{message}{end}{bcolors.ENDC}")
# def report_config(dir_home, cfg_file_path):
# print_main_start("Loading Configuration File")
# if cfg_file_path == None:
# print_main_info(''.join([os.path.join(dir_home, 'LeafMachine2.yaml')]))
# elif cfg_file_path == 'test_installation':
# print_main_info(''.join([os.path.join(dir_home, 'demo','LeafMachine2_demo.yaml')]))
# else:
# print_main_info(cfg_file_path)
# def report_config_VV(dir_home, cfg_file_path):
# print_main_start("Loading Configuration File")
# if cfg_file_path == None:
# print_main_info(''.join([os.path.join(dir_home, 'VoucherVision.yaml')]))
# elif cfg_file_path == 'test_installation':
# print_main_info(''.join([os.path.join(dir_home, 'demo','VoucherVision_demo.yaml')]))
# else:
# print_main_info(cfg_file_path)
def report_config(dir_home, cfg_file_path, system='VoucherVision'):
print_main_start("Loading Configuration File")
if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
raise ValueError("Invalid system. Expected 'LeafMachine2' or 'VoucherVision' or 'SpecimenCrop'.")
if cfg_file_path == None:
print_main_info(''.join([os.path.join(dir_home, f'{system}.yaml')]))
elif cfg_file_path == 'test_installation':
print_main_info(''.join([os.path.join(dir_home, 'demo', f'{system}_demo.yaml')]))
else:
print_main_info(cfg_file_path)
def make_file_names_valid(dir, cfg):
if cfg['leafmachine']['do']['check_for_illegal_filenames']:
n_total = len(os.listdir(dir))
for file in tqdm(os.listdir(dir), desc=f'{bcolors.HEADER} Removing illegal characters from file names{bcolors.ENDC}',colour="cyan",position=0,total = n_total):
name = Path(file).stem
ext = Path(file).suffix
name_cleaned = re.sub(r"[^a-zA-Z0-9_-]","-",name)
name_new = ''.join([name_cleaned,ext])
i = 0
try:
os.rename(os.path.join(dir,file), os.path.join(dir,name_new))
except:
while os.path.exists(os.path.join(dir,name_new)):
i += 1
name_new = '_'.join([name_cleaned, str(i), ext])
os.rename(os.path.join(dir,file), os.path.join(dir,name_new))
# def load_config_file(dir_home, cfg_file_path):
# if cfg_file_path == None: # Default path
# return load_cfg(dir_home)
# else:
# if cfg_file_path == 'test_installation':
# path_cfg = os.path.join(dir_home,'demo','LeafMachine2_demo.yaml')
# return get_cfg_from_full_path(path_cfg)
# else: # Custom path
# return get_cfg_from_full_path(cfg_file_path)
# def load_config_file_VV(dir_home, cfg_file_path):
# if cfg_file_path == None: # Default path
# return load_cfg_VV(dir_home)
# else:
# if cfg_file_path == 'test_installation':
# path_cfg = os.path.join(dir_home,'demo','VoucherVision_demo.yaml')
# return get_cfg_from_full_path(path_cfg)
# else: # Custom path
# return get_cfg_from_full_path(cfg_file_path)
def load_config_file(dir_home, cfg_file_path, system='LeafMachine2'):
if system not in ['LeafMachine2', 'VoucherVision', 'SpecimenCrop']:
raise ValueError("Invalid system. Expected 'LeafMachine2' or 'VoucherVision' or 'SpecimenCrop'.")
if cfg_file_path is None: # Default path
if system == 'LeafMachine2':
return load_cfg(dir_home, system='LeafMachine2') # For LeafMachine2
elif system == 'VoucherVision': # VoucherVision
return load_cfg(dir_home, system='VoucherVision') # For VoucherVision
elif system == 'SpecimenCrop': # SpecimenCrop
return load_cfg(dir_home, system='SpecimenCrop') # For SpecimenCrop
else:
if cfg_file_path == 'test_installation':
path_cfg = os.path.join(dir_home, 'demo', f'{system}_demo.yaml')
return get_cfg_from_full_path(path_cfg)
else: # Custom path
return get_cfg_from_full_path(cfg_file_path)
def load_config_file_testing(dir_home, cfg_file_path):
if cfg_file_path == None: # Default path
return load_cfg(dir_home)
else:
if cfg_file_path == 'test_installation':
path_cfg = os.path.join(dir_home,'demo','demo.yaml')
return get_cfg_from_full_path(path_cfg)
else: # Custom path
return get_cfg_from_full_path(cfg_file_path)
def subset_dir_images(cfg, Project, Dirs):
if cfg['leafmachine']['project']['process_subset_of_images']:
dir_images_subset = cfg['leafmachine']['project']['dir_images_subset']
num_images_per_species = cfg['leafmachine']['project']['n_images_per_species']
if cfg['leafmachine']['project']['species_list'] is not None:
species_list = import_csv(cfg['leafmachine']['project']['species_list'])
species_list = species_list.iloc[:, 0].tolist()
else:
species_list = None
validate_dir(dir_images_subset)
species_counts = {}
filenames = os.listdir(Project.dir_images)
random.shuffle(filenames)
for filename in filenames:
species_name = filename.split('.')[0]
species_name = species_name.split('_')[2:]
species_name = '_'.join([species_name[0], species_name[1], species_name[2]])
if (species_list is None) or ((species_name in species_list) and (species_list is not None)):
if species_name not in species_counts:
species_counts[species_name] = 0
if species_counts[species_name] < num_images_per_species:
species_counts[species_name] += 1
src_path = os.path.join(Project.dir_images, filename)
dest_path = os.path.join(dir_images_subset, filename)
shutil.copy(src_path, dest_path)
Project.dir_images = dir_images_subset
subset_csv_name = os.path.join(Dirs.dir_images_subset, '.'.join([Dirs.run_name, 'csv']))
df = pd.DataFrame({'species_name': list(species_counts.keys()), 'count': list(species_counts.values())})
df.to_csv(subset_csv_name, index=False)
return Project
else:
return Project
'''# Define function to be executed by each worker
def worker_crop(rank, cfg, dir_home, Project, Dirs):
# Set worker seed based on rank
np.random.seed(rank)
# Call function for this worker
crop_detections_from_images(cfg, dir_home, Project, Dirs)
def crop_detections_from_images(cfg, dir_home, Project, Dirs):
num_workers = 6
# Initialize and start worker processes
processes = []
for rank in range(num_workers):
p = mp.Process(target=worker_crop, args=(rank, cfg, dir_home, Project, Dirs))
p.start()
processes.append(p)
# Wait for all worker processes to finish
for p in processes:
p.join()'''
def crop_detections_from_images_worker_VV(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels):
try:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
except:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))
try:
archival = analysis['Detections_Archival_Components']
has_archival = True
except:
has_archival = False
try:
plant = analysis['Detections_Plant_Components']
has_plant = True
except:
has_plant = False
if has_archival and (save_per_image or save_per_class):
crop_component_from_yolo_coords_VV('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
def crop_detections_from_images_worker(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels):
try:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
except:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))
try:
archival = analysis['Detections_Archival_Components']
has_archival = True
except:
has_archival = False
try:
plant = analysis['Detections_Plant_Components']
has_plant = True
except:
has_plant = False
if has_archival and (save_per_image or save_per_class):
crop_component_from_yolo_coords('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
if has_plant and (save_per_image or save_per_class):
crop_component_from_yolo_coords('PLANT', Dirs, analysis, plant, full_image, filename, save_per_image, save_per_class, save_list)
def crop_detections_from_images(cfg, logger, dir_home, Project, Dirs, batch_size=50):
t2_start = perf_counter()
logger.name = 'Crop Components'
if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
logger.info(f"Cropping {detections} components from images")
save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
try:
binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
except:
binarize_labels = False
if cfg['leafmachine']['project']['batch_size'] is None:
batch_size = 50
else:
batch_size = int(cfg['leafmachine']['project']['batch_size'])
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 4
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
if binarize_labels:
save_per_class = True
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = []
for i in range(0, len(Project.project_data), batch_size):
batch = list(Project.project_data.items())[i:i+batch_size]
# print(f'Cropping Detections from Images {i} to {i+batch_size}')
logger.info(f'Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
for filename, analysis in batch:
if len(analysis) != 0:
futures.append(executor.submit(crop_detections_from_images_worker, filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels))
for future in concurrent.futures.as_completed(futures):
pass
futures.clear()
t2_stop = perf_counter()
logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")
def crop_detections_from_images_VV(cfg, logger, dir_home, Project, Dirs, batch_size=50):
t2_start = perf_counter()
logger.name = 'Crop Components'
if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
logger.info(f"Cropping {detections} components from images")
save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
if cfg['leafmachine']['project']['batch_size'] is None:
batch_size = 50
else:
batch_size = int(cfg['leafmachine']['project']['batch_size'])
if cfg['leafmachine']['project']['num_workers'] is None:
num_workers = 4
else:
num_workers = int(cfg['leafmachine']['project']['num_workers'])
if binarize_labels:
save_per_class = True
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = []
for i in range(0, len(Project.project_data), batch_size):
batch = list(Project.project_data.items())[i:i+batch_size]
# print(f'Cropping Detections from Images {i} to {i+batch_size}')
logger.info(f'Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
for filename, analysis in batch:
if len(analysis) != 0:
futures.append(executor.submit(crop_detections_from_images_worker_VV, filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels))
for future in concurrent.futures.as_completed(futures):
pass
futures.clear()
t2_stop = perf_counter()
logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")
# def crop_detections_from_images_VV(cfg, logger, dir_home, Project, Dirs, batch_size=50):
# t2_start = perf_counter()
# logger.name = 'Crop Components'
# if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
# detections = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
# logger.info(f"Cropping {detections} components from images")
# save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
# save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
# save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
# binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
# if cfg['leafmachine']['project']['batch_size'] is None:
# batch_size = 50
# else:
# batch_size = int(cfg['leafmachine']['project']['batch_size'])
# if binarize_labels:
# save_per_class = True
# for i in range(0, len(Project.project_data), batch_size):
# batch = list(Project.project_data.items())[i:i+batch_size]
# logger.info(f"Cropping {detections} from images {i} to {i+batch_size} [{len(Project.project_data)}]")
# for filename, analysis in batch:
# if len(analysis) != 0:
# crop_detections_from_images_worker_VV(filename, analysis, Project, Dirs, save_per_image, save_per_class, save_list, binarize_labels)
# t2_stop = perf_counter()
# logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")
# def crop_detections_from_images_SpecimenCrop(cfg, logger, dir_home, Project, Dirs, original_img_dir=None, batch_size=50):
# t2_start = perf_counter()
# logger.name = 'Crop Components --- Specimen Crop'
# if cfg['leafmachine']['modules']['specimen_crop']:
# # save_list = ['ruler', 'barcode', 'colorcard', 'label', 'map', 'envelope', 'photo', 'attached_item', 'weights',
# # 'leaf_whole', 'leaf_partial', 'leaflet', 'seed_fruit_one', 'seed_fruit_many', 'flower_one', 'flower_many', 'bud', 'specimen', 'roots', 'wood']
# save_list = cfg['leafmachine']['cropped_components']['include_these_objects_in_specimen_crop']
# logger.info(f"Cropping to include {save_list} components from images")
# if cfg['leafmachine']['project']['batch_size'] is None:
# batch_size = 50
# else:
# batch_size = int(cfg['leafmachine']['project']['batch_size'])
# if cfg['leafmachine']['project']['num_workers'] is None:
# num_workers = 4
# else:
# num_workers = int(cfg['leafmachine']['project']['num_workers'])
# with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
# futures = []
# for i in range(0, len(Project.project_data), batch_size):
# batch = list(Project.project_data.items())[i:i+batch_size]
# # print(f'Cropping Detections from Images {i} to {i+batch_size}')
# logger.info(f'Cropping {save_list} from images {i} to {i+batch_size} [{len(Project.project_data)}]')
# for filename, analysis in batch:
# if len(analysis) != 0:
# futures.append(executor.submit(crop_detections_from_images_worker_SpecimenCrop, filename, analysis, Project, Dirs, save_list, original_img_dir))
# for future in concurrent.futures.as_completed(futures):
# pass
# futures.clear()
# t2_stop = perf_counter()
# logger.info(f"Save cropped components --- elapsed time: {round(t2_stop - t2_start)} seconds")
'''
# Single threaded
def crop_detections_from_images(cfg, dir_home, Project, Dirs):
if cfg['leafmachine']['cropped_components']['do_save_cropped_annotations']:
save_per_image = cfg['leafmachine']['cropped_components']['save_per_image']
save_per_class = cfg['leafmachine']['cropped_components']['save_per_annotation_class']
save_list = cfg['leafmachine']['cropped_components']['save_cropped_annotations']
binarize_labels = cfg['leafmachine']['cropped_components']['binarize_labels']
if binarize_labels:
save_per_class = True
for filename, analysis in tqdm(Project.project_data.items(), desc=f'{bcolors.BOLD} Cropping Detections from Images{bcolors.ENDC}',colour="cyan",position=0,total = len(Project.project_data.items())):
if len(analysis) != 0:
try:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpg'])))
except:
full_image = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename, 'jpeg'])))
try:
archival = analysis['Detections_Archival_Components']
has_archival = True
except:
has_archival = False
try:
plant = analysis['Detections_Plant_Components']
has_plant = True
except:
has_plant = False
if has_archival and (save_per_image or save_per_class):
crop_component_from_yolo_coords('ARCHIVAL', Dirs, analysis, archival, full_image, filename, save_per_image, save_per_class, save_list)
if has_plant and (save_per_image or save_per_class):
crop_component_from_yolo_coords('PLANT', Dirs, analysis, plant, full_image, filename, save_per_image, save_per_class, save_list)
'''
def process_detections(success, save_list, detections, detection_type, height, width, min_x, min_y, max_x, max_y):
for detection in detections:
detection_class = detection[0]
detection_class = set_index_for_annotation(detection_class, detection_type)
if (detection_class in save_list) or ('save_all' in save_list):
location = yolo_to_position_ruler(detection, height, width)
ruler_polygon = [
(location[1], location[2]),
(location[3], location[2]),
(location[3], location[4]),
(location[1], location[4])
]
x_coords = [x for x, y in ruler_polygon]
y_coords = [y for x, y in ruler_polygon]
min_x = min(min_x, *x_coords)
min_y = min(min_y, *y_coords)
max_x = max(max_x, *x_coords)
max_y = max(max_y, *y_coords)
success = True
return min_x, min_y, max_x, max_y, success
def crop_component_from_yolo_coords_VV(anno_type, Dirs, analysis, all_detections, full_image, filename, save_per_image, save_per_class, save_list):
height = analysis['height']
width = analysis['width']
# Initialize a list to hold all the cropped images
cropped_images = []
if len(all_detections) < 1:
print(' MAKE THIS HAVE AN EMPTY PLACEHOLDER') # TODO ###################################################################################
else:
for detection in all_detections:
detection_class = detection[0]
detection_class = set_index_for_annotation(detection_class, anno_type)
if (detection_class in save_list) or ('save_all' in save_list):
location = yolo_to_position_ruler(detection, height, width)
ruler_polygon = [(location[1], location[2]), (location[3], location[2]), (location[3], location[4]), (location[1], location[4])]
x_coords = [x for x, y in ruler_polygon]
y_coords = [y for x, y in ruler_polygon]
min_x, min_y = min(x_coords), min(y_coords)
max_x, max_y = max(x_coords), max(y_coords)
detection_cropped = full_image[min_y:max_y, min_x:max_x]
cropped_images.append(detection_cropped)
loc = '-'.join([str(min_x), str(min_y), str(max_x), str(max_y)])
detection_cropped_name = '.'.join(['__'.join([filename, detection_class, loc]), 'jpg'])
# detection_cropped_name = '.'.join([filename,'jpg'])
# save_per_image
if (detection_class in save_list) and save_per_image:
if detection_class == 'label':
detection_class2 = 'label_ind'
else:
detection_class2 = detection_class
dir_destination = os.path.join(Dirs.save_per_image, filename, detection_class2)
# print(os.path.join(dir_destination,detection_cropped_name))
validate_dir(dir_destination)
# cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
# save_per_class
if (detection_class in save_list) and save_per_class:
if detection_class == 'label':
detection_class2 = 'label_ind'
else:
detection_class2 = detection_class
dir_destination = os.path.join(Dirs.save_per_annotation_class, detection_class2)
# print(os.path.join(dir_destination,detection_cropped_name))
validate_dir(dir_destination)
# cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
else:
# print(f'detection_class: {detection_class} not in save_list: {save_list}')
pass
### Below creates the LM2 Label Collage image
# Initialize a list to hold all the acceptable cropped images
acceptable_cropped_images = []
for img in cropped_images:
# Calculate the aspect ratio of the image
aspect_ratio = min(img.shape[0], img.shape[1]) / max(img.shape[0], img.shape[1])
# Only add the image to the acceptable list if the aspect ratio is more square than 1:8
if aspect_ratio >= 1/8:
acceptable_cropped_images.append(img)
# Sort acceptable_cropped_images by area (largest first)
acceptable_cropped_images.sort(key=lambda img: img.shape[0] * img.shape[1], reverse=True)
# If there are no acceptable cropped images, set combined_image to None or to a placeholder image
if not acceptable_cropped_images:
combined_image = None # Or a placeholder image here
else:
# # Recalculate max_width and total_height for acceptable images
# max_width = max(img.shape[1] for img in acceptable_cropped_images)
# total_height = sum(img.shape[0] for img in acceptable_cropped_images)
# # Now, combine all the acceptable cropped images into a single image
# combined_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)
# y_offset = 0
# for img in acceptable_cropped_images:
# combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
# y_offset += img.shape[0]
# Start with the first image
# Recalculate max_width and total_height for acceptable images
max_width = max(img.shape[1] for img in acceptable_cropped_images)
total_height = sum(img.shape[0] for img in acceptable_cropped_images)
combined_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)
y_offset = 0
y_offset_next_row = 0
x_offset = 0
# Start with the first image
combined_image[y_offset:y_offset+acceptable_cropped_images[0].shape[0], :acceptable_cropped_images[0].shape[1]] = acceptable_cropped_images[0]
y_offset_next_row += acceptable_cropped_images[0].shape[0]
# Add the second image below the first one
y_offset = y_offset_next_row
combined_image[y_offset:y_offset+acceptable_cropped_images[1].shape[0], :acceptable_cropped_images[1].shape[1]] = acceptable_cropped_images[1]
y_offset_next_row += acceptable_cropped_images[1].shape[0]
# Create a list to store the images that are too tall for the current row
too_tall_images = []
# Now try to fill in to the right with the remaining images
current_width = acceptable_cropped_images[1].shape[1]
for img in acceptable_cropped_images[2:]:
if current_width + img.shape[1] > max_width:
# If this image doesn't fit, start a new row
y_offset = y_offset_next_row
combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
current_width = img.shape[1]
y_offset_next_row = y_offset + img.shape[0]
else:
# If this image fits, add it to the right
max_height = y_offset_next_row - y_offset
if img.shape[0] > max_height:
too_tall_images.append(img)
else:
combined_image[y_offset:y_offset+img.shape[0], current_width:current_width+img.shape[1]] = img
current_width += img.shape[1]
# Process the images that were too tall for their rows
for img in too_tall_images:
y_offset = y_offset_next_row
combined_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
y_offset_next_row += img.shape[0]
# Trim the combined_image to remove extra black space
combined_image = combined_image[:y_offset_next_row]
# save the combined image
# if (detection_class in save_list) and save_per_class:
dir_destination = os.path.join(Dirs.save_per_annotation_class, 'label')
validate_dir(dir_destination)
# combined_image_name = '__'.join([filename, detection_class]) + '.jpg'
combined_image_name = '.'.join([filename,'jpg'])
cv2.imwrite(os.path.join(dir_destination, combined_image_name), combined_image)
original_image_name = '.'.join([filename,'jpg'])
cv2.imwrite(os.path.join(Dirs.save_original, original_image_name), full_image)
def create_specimen_collage(cfg, logger, dir_home, Project, Dirs):
if cfg['leafmachine']['use_RGB_label_images'] == 2:
# Get all filenames in the save_original directory that end with .jpg or .jpeg
filenames = [f for f in os.listdir(Dirs.save_original) if f.lower().endswith(('.jpg', '.jpeg'))]
# Dictionary to group filenames by their file stem (e.g., FMNH_6238)
grouped_filenames = defaultdict(list)
for filename in filenames:
parts = filename.rsplit('_', 1)
if len(parts) == 2 and parts[1][0].isalnum():
file_stem = parts[0]
grouped_filenames[file_stem].append(filename)
else:
logger.warning(f"Filename {filename} does not match expected pattern. Skipping.")
# Process each group of images
for file_stem, group in grouped_filenames.items():
# Load all cropped images for the current group
cropped_images = [cv2.imread(os.path.join(Dirs.save_original, filename)) for filename in group]
if not cropped_images:
logger.error(f"No images found for {file_stem}. Skipping collage creation.")
continue
# Rotate images so that width is greater than height
for i, img in enumerate(cropped_images):
if img.shape[0] > img.shape[1]: # height > width
if cfg['leafmachine']['project']['specimen_rotate']:
cropped_images[i] = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
else:
cropped_images[i] = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
# Calculate the maximum width and total height required for the collage
max_width = max(img.shape[1] for img in cropped_images)
total_height = sum(img.shape[0] for img in cropped_images)
# Create a black image with the required dimensions
collage_image = np.zeros((total_height, max_width, 3), dtype=np.uint8)
# Stack images on top of each other
y_offset = 0
for img in cropped_images:
collage_image[y_offset:y_offset+img.shape[0], :img.shape[1]] = img
y_offset += img.shape[0]
# Generate the combined filename from the file stem
collage_filename = f"{file_stem}_collage.jpg"
# Save the collage image
collage_destination = os.path.join(Dirs.save_per_annotation_class, 'label', collage_filename)
validate_dir(os.path.dirname(collage_destination))
cv2.imwrite(collage_destination, collage_image)
logger.info(f"Saved collage image: {collage_destination}")
# Save each individual image separately
for filename in group:
original_image_name = os.path.basename(filename)
save_destination = os.path.join(Dirs.save_original, original_image_name)
validate_dir(os.path.dirname(save_destination))
cv2.imwrite(save_destination, cv2.imread(os.path.join(Dirs.save_original, filename)))
logger.info(f"Saved original image: {save_destination}")
# After processing, delete the original images, leaving only the _collage images
# This is used just in case the HF version puts them there
# for filename in filenames:
# if not filename.endswith('_collage.jpg'):
# file_path = os.path.join(Dirs.save_original, filename)
# if os.path.exists(file_path):
# os.remove(file_path)
# logger.info(f"Deleted original image: {file_path}")
def crop_component_from_yolo_coords(anno_type, Dirs, analysis, all_detections, full_image, filename, save_per_image, save_per_class, save_list):
height = analysis['height']
width = analysis['width']
if len(all_detections) < 1:
print(' MAKE THIS HAVE AN EMPTY PLACEHOLDER') # TODO ###################################################################################
else:
for detection in all_detections:
detection_class = detection[0]
detection_class = set_index_for_annotation(detection_class, anno_type)
if (detection_class in save_list) or ('save_all' in save_list):
location = yolo_to_position_ruler(detection, height, width)
ruler_polygon = [(location[1], location[2]), (location[3], location[2]), (location[3], location[4]), (location[1], location[4])]
x_coords = [x for x, y in ruler_polygon]
y_coords = [y for x, y in ruler_polygon]
min_x, min_y = min(x_coords), min(y_coords)
max_x, max_y = max(x_coords), max(y_coords)
detection_cropped = full_image[min_y:max_y, min_x:max_x]
loc = '-'.join([str(min_x), str(min_y), str(max_x), str(max_y)])
detection_cropped_name = '.'.join(['__'.join([filename, detection_class, loc]), 'jpg'])
# save_per_image
if (detection_class in save_list) and save_per_image:
dir_destination = os.path.join(Dirs.save_per_image, filename, detection_class)
# print(os.path.join(dir_destination,detection_cropped_name))
validate_dir(dir_destination)
cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
# save_per_class
if (detection_class in save_list) and save_per_class:
dir_destination = os.path.join(Dirs.save_per_annotation_class, detection_class)
# print(os.path.join(dir_destination,detection_cropped_name))
validate_dir(dir_destination)
cv2.imwrite(os.path.join(dir_destination,detection_cropped_name), detection_cropped)
else:
# print(f'detection_class: {detection_class} not in save_list: {save_list}')
pass
def yolo_to_position_ruler(annotation, height, width):
return ['ruler',
int((annotation[1] * width) - ((annotation[3] * width) / 2)),
int((annotation[2] * height) - ((annotation[4] * height) / 2)),
int(annotation[3] * width) + int((annotation[1] * width) - ((annotation[3] * width) / 2)),
int(annotation[4] * height) + int((annotation[2] * height) - ((annotation[4] * height) / 2))]
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
CEND = '\33[0m'
CBOLD = '\33[1m'
CITALIC = '\33[3m'
CURL = '\33[4m'
CBLINK = '\33[5m'
CBLINK2 = '\33[6m'
CSELECTED = '\33[7m'
CBLACK = '\33[30m'
CRED = '\33[31m'
CGREEN = '\33[32m'
CYELLOW = '\33[33m'
CBLUE = '\33[34m'
CVIOLET = '\33[35m'
CBEIGE = '\33[36m'
CWHITE = '\33[37m'
CBLACKBG = '\33[40m'
CREDBG = '\33[41m'
CGREENBG = '\33[42m'
CYELLOWBG = '\33[43m'
CBLUEBG = '\33[44m'
CVIOLETBG = '\33[45m'
CBEIGEBG = '\33[46m'
CWHITEBG = '\33[47m'
CGREY = '\33[90m'
CRED2 = '\33[91m'
CGREEN2 = '\33[92m'
CYELLOW2 = '\33[93m'
CBLUE2 = '\33[94m'
CVIOLET2 = '\33[95m'
CBEIGE2 = '\33[96m'
CWHITE2 = '\33[97m'
CGREYBG = '\33[100m'
CREDBG2 = '\33[101m'
CGREENBG2 = '\33[102m'
CYELLOWBG2 = '\33[103m'
CBLUEBG2 = '\33[104m'
CVIOLETBG2 = '\33[105m'
CBEIGEBG2 = '\33[106m'
CWHITEBG2 = '\33[107m'
CBLUEBG3 = '\33[112m'
def set_index_for_annotation(cls,annoType):
if annoType == 'PLANT':
if cls == 0:
annoInd = 'Leaf_WHOLE'
elif cls == 1:
annoInd = 'Leaf_PARTIAL'
elif cls == 2:
annoInd = 'Leaflet'
elif cls == 3:
annoInd = 'Seed_Fruit_ONE'
elif cls == 4:
annoInd = 'Seed_Fruit_MANY'
elif cls == 5:
annoInd = 'Flower_ONE'
elif cls == 6:
annoInd = 'Flower_MANY'
elif cls == 7:
annoInd = 'Bud'
elif cls == 8:
annoInd = 'Specimen'
elif cls == 9:
annoInd = 'Roots'
elif cls == 10:
annoInd = 'Wood'
elif annoType == 'ARCHIVAL':
if cls == 0:
annoInd = 'Ruler'
elif cls == 1:
annoInd = 'Barcode'
elif cls == 2:
annoInd = 'Colorcard'
elif cls == 3:
annoInd = 'Label'
elif cls == 4:
annoInd = 'Map'
elif cls == 5:
annoInd = 'Envelope'
elif cls == 6:
annoInd = 'Photo'
elif cls == 7:
annoInd = 'Attached_item'
elif cls == 8:
annoInd = 'Weights'
return annoInd.lower()
# def set_yaml(path_to_yaml, value):
# with open('file_to_edit.yaml') as f:
# doc = yaml.load(f)
# doc['state'] = state
# with open('file_to_edit.yaml', 'w') as f:
# yaml.dump(doc, f) |