File size: 10,174 Bytes
e91ac58
9d06861
e91ac58
 
 
 
 
 
 
9d06861
ae215ea
 
a145e37
 
 
 
 
 
 
 
ae215ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
567930d
9d06861
 
 
 
e91ac58
 
ae215ea
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
e91ac58
9d06861
e91ac58
 
 
 
 
 
 
 
9d06861
 
 
 
 
 
e91ac58
 
 
 
 
524a99c
 
 
e91ac58
524a99c
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
9d06861
 
 
 
 
 
 
e91ac58
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
524a99c
a145e37
 
 
 
 
 
 
 
 
 
 
e91ac58
524a99c
 
a145e37
 
 
 
 
 
9d06861
524a99c
 
9d06861
 
 
e91ac58
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
524a99c
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Helper funcs for LLM_XXXXX.py
import tiktoken, json, os, yaml
from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS
from transformers import AutoTokenizer
import GPUtil
import time
import psutil
import threading
import torch
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed

try:
    from vouchervision.tool_taxonomy_WFO import validate_taxonomy_WFO, WFONameMatcher
    from vouchervision.tool_geolocate_HERE import validate_coordinates_here
    from vouchervision.tool_wikipedia import validate_wikipedia
except:
    from tool_taxonomy_WFO import validate_taxonomy_WFO, WFONameMatcher
    from tool_geolocate_HERE import validate_coordinates_here
    from tool_wikipedia import validate_wikipedia

def run_tools(output, tool_WFO, tool_GEO, tool_wikipedia, json_file_path_wiki):
    # Define a function that will catch and return the results of your functions
    def task(func, *args, **kwargs):
        return func(*args, **kwargs)

    # List of tasks to run in separate threads
    tasks = [
        (validate_taxonomy_WFO, (tool_WFO, output, False)),
        (validate_coordinates_here, (tool_GEO, output, False)),
        (validate_wikipedia, (tool_wikipedia, json_file_path_wiki, output)),
    ]

    # Results storage
    results = {}

    # Use ThreadPoolExecutor to execute each function in its own thread
    with ThreadPoolExecutor() as executor:
        future_to_func = {executor.submit(task, func, *args): func.__name__ for func, args in tasks}
        for future in as_completed(future_to_func):
            func_name = future_to_func[future]
            try:
                # Collecting results
                results[func_name] = future.result()
            except Exception as exc:
                print(f'{func_name} generated an exception: {exc}')

    # Here, all threads have completed
    # Extracting results
    Matcher = WFONameMatcher(tool_WFO)
    GEO_dict_null = {
        'GEO_override_OCR': False,
        'GEO_method': '',
        'GEO_formatted_full_string': '',
        'GEO_decimal_lat': '',
        'GEO_decimal_long': '',
        'GEO_city': '',
        'GEO_county': '',
        'GEO_state': '',
        'GEO_state_code': '',
        'GEO_country': '',
        'GEO_country_code': '',
        'GEO_continent': '',
    }
    output_WFO, WFO_record = results.get('validate_taxonomy_WFO', (output, Matcher.NULL_DICT))
    output_GEO, GEO_record = results.get('validate_coordinates_here', (output, GEO_dict_null))

    return output_WFO, WFO_record, output_GEO, GEO_record



def save_individual_prompt(prompt_template, txt_file_path_ind_prompt):
    with open(txt_file_path_ind_prompt, 'w',encoding='utf-8') as file:
        file.write(prompt_template)



def sanitize_prompt(data):
    if isinstance(data, dict):
        return {sanitize_prompt(key): sanitize_prompt(value) for key, value in data.items()}
    elif isinstance(data, list):
        return [sanitize_prompt(element) for element in data]
    elif isinstance(data, str):
        return data.encode('utf-8', 'ignore').decode('utf-8')
    else:
        return data
    

def count_tokens(string, vendor, model_name):
    full_string = string + JSON_FORMAT_INSTRUCTIONS
    
    def run_count(full_string, model_name):
            # Ensure the encoding is obtained correctly.
            encoding = tiktoken.encoding_for_model(model_name)
            tokens = encoding.encode(full_string)
            return len(tokens)
        
    try:
        if vendor == 'mistral':
            tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

            tokens = tokenizer.tokenize(full_string)
            return len(tokens)
        
        else:
            return run_count(full_string, model_name)
        
    except Exception as e:
        print(f"An error occurred: {e}")
        return 0
    


class SystemLoadMonitor():
    def __init__(self, logger) -> None:
        self.monitoring_thread = None
        self.logger = logger
        self.gpu_usage = {'max_cpu_usage': 0, 'max_load': 0, 'max_vram_usage': 0, "max_ram_usage": 0, 'n_gpus': 0, 'monitoring': True}
        self.start_time = None
        self.tool_start_time = None
        self.has_GPU = torch.cuda.is_available()
        self.monitor_interval = 2
        
    def start_monitoring_usage(self):
        self.start_time = time.time()
        self.monitoring_thread = threading.Thread(target=self.monitor_usage, args=(self.monitor_interval,))
        self.monitoring_thread.start()

    def stop_inference_timer(self):
        # Stop inference timer and record elapsed time
        self.inference_time = time.time() - self.start_time
        # Immediately start the tool timer
        self.tool_start_time = time.time()

    def monitor_usage(self, interval):
        while self.gpu_usage['monitoring']:
            # GPU monitoring
            if self.has_GPU:
                GPUs = GPUtil.getGPUs()
                self.gpu_usage['n_gpus'] = len(GPUs)  # Count the number of GPUs
                total_load = 0
                total_memory_usage_gb = 0
                for gpu in GPUs:
                    total_load += gpu.load
                    total_memory_usage_gb += gpu.memoryUsed / 1024.0
                
                if self.gpu_usage['n_gpus'] > 0:  # Avoid division by zero
                    # Calculate the average load and memory usage across all GPUs
                    self.gpu_usage['max_load'] = max(self.gpu_usage['max_load'], total_load / self.gpu_usage['n_gpus'])
                    self.gpu_usage['max_vram_usage'] = max(self.gpu_usage['max_vram_usage'], total_memory_usage_gb)
            
            # RAM monitoring
            ram_usage = psutil.virtual_memory().used / (1024.0 ** 3)  # Get RAM usage in GB
            self.gpu_usage['max_ram_usage'] = max(self.gpu_usage.get('max_ram_usage', 0), ram_usage)
            
            # CPU monitoring
            cpu_usage = psutil.cpu_percent(interval=None)
            self.gpu_usage['max_cpu_usage'] = max(self.gpu_usage.get('max_cpu_usage', 0), cpu_usage)
            time.sleep(interval)

    def get_current_datetime(self):
        # Get the current date and time
        now = datetime.now()
        # Format it as a string, replacing colons with underscores
        datetime_iso = now.strftime('%Y_%m_%dT%H_%M_%S')
        return datetime_iso

    def stop_monitoring_report_usage(self):
        self.gpu_usage['monitoring'] = False
        self.monitoring_thread.join()
        tool_time = time.time() - self.tool_start_time if self.tool_start_time else 0

        num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()

        report = {
            'inference_time_s': str(round(self.inference_time, 2)),
            'tool_time_s': str(round(tool_time, 2)),
            'max_cpu': str(round(self.gpu_usage['max_cpu_usage'], 2)),
            'max_ram_gb': str(round(self.gpu_usage['max_ram_usage'], 2)),
            'current_time': self.get_current_datetime(),
            'n_gpus': self.gpu_usage['n_gpus'],
            'total_gpu_vram_gb':total_vram_gb, 
            'capability_score':capability_score,
            
        }

        if self.logger:
            self.logger.info(f"Inference Time: {round(self.inference_time,2)} seconds")
            self.logger.info(f"Tool Time: {round(tool_time,2)} seconds")
            self.logger.info(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
            self.logger.info(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")
        else:
            print(f"Inference Time: {round(self.inference_time,2)} seconds")
            print(f"Tool Time: {round(tool_time,2)} seconds")
            print(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
            print(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")

        if self.has_GPU:
            report.update({'max_gpu_load': str(round(self.gpu_usage['max_load'] * 100, 2))})
            report.update({'max_gpu_vram_gb': str(round(self.gpu_usage['max_vram_usage'], 2))})
            if self.logger:
                self.logger.info(f"Max GPU Load: {round(self.gpu_usage['max_load'] * 100, 2)}%")
                self.logger.info(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'], 2)}GB")
            else:
                print(f"Max GPU Load: {round(self.gpu_usage['max_load'] * 100, 2)}%")
                print(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'], 2)}GB")
        else:
            report.update({'max_gpu_load': '0'})
            report.update({'max_gpu_vram_gb': '0'})

        return report
    


def check_system_gpus():
    print(f"Torch CUDA: {torch.cuda.is_available()}")
    # if not torch.cuda.is_available():
    #     return 0, {}, 0, "no_gpu"
    
    GPUs = GPUtil.getGPUs()
    num_gpus = len(GPUs)
    gpu_dict = {}
    total_vram = 0
    
    for i, gpu in enumerate(GPUs):
        gpu_vram = gpu.memoryTotal  # VRAM in MB
        gpu_dict[f"GPU_{i}"] = f"{gpu_vram / 1024} GB"  # Convert to GB
        total_vram += gpu_vram
    
    total_vram_gb = total_vram / 1024  # Convert total VRAM to GB
    
    capability_score_map = {
        "no_gpu": 0,
        "class_8GB": 10,
        "class_12GB": 14,
        "class_16GB": 18,
        "class_24GB": 26,
        "class_48GB": 50,
        "class_96GB": 100,
        "class_96GBplus": float('inf'),  # Use infinity to represent any value greater than 96GB
    }
    
    # Determine the capability score based on the total VRAM
    capability_score = "no_gpu"
    for score, vram in capability_score_map.items():
        if total_vram_gb <= vram:
            capability_score = score
            break
    else:
        capability_score = "class_max"
    
    return num_gpus, gpu_dict, total_vram_gb, capability_score
    
    




if __name__ == '__main__':
    num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()
    print(f"Number of GPUs: {num_gpus}")
    print(f"GPU Details: {gpu_dict}")
    print(f"Total VRAM: {total_vram_gb} GB")
    print(f"Capability Score: {capability_score}")