VoucherVision / vouchervision /OCR_google_cloud_vision.py
phyloforfun's picture
updates
567930d
raw
history blame
37.3 kB
import os, io, sys, inspect, statistics, json, cv2
from statistics import mean
# from google.cloud import vision, storage
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
from PIL import Image, ImageDraw, ImageFont
import colorsys
from tqdm import tqdm
from google.oauth2 import service_account
### LLaVA should only be installed if the user will actually use it.
### It requires the most recent pytorch/Python and can mess with older systems
'''
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{baek2019character,
title={Character Region Awareness for Text Detection},
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9365--9374},
year={2019}
}
'''
class OCREngine:
BBOX_COLOR = "black"
def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
self.is_hf = is_hf
self.logger = logger
self.json_report = json_report
self.path = path
self.cfg = cfg
self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
self.double_OCR = self.cfg['leafmachine']['project']['double_OCR']
self.dir_home = dir_home
# Initialize TrOCR components
self.trOCR_model_version = trOCR_model_version
self.trOCR_processor = trOCR_processor
self.trOCR_model = trOCR_model
self.device = device
self.hand_cleaned_text = None
self.hand_organized_text = None
self.hand_bounds = None
self.hand_bounds_word = None
self.hand_bounds_flat = None
self.hand_text_to_box_mapping = None
self.hand_height = None
self.hand_confidences = None
self.hand_characters = None
self.normal_cleaned_text = None
self.normal_organized_text = None
self.normal_bounds = None
self.normal_bounds_word = None
self.normal_text_to_box_mapping = None
self.normal_bounds_flat = None
self.normal_height = None
self.normal_confidences = None
self.normal_characters = None
self.trOCR_texts = None
self.trOCR_text_to_box_mapping = None
self.trOCR_bounds_flat = None
self.trOCR_height = None
self.trOCR_confidences = None
self.trOCR_characters = None
self.set_client()
self.init_craft()
self.multimodal_prompt = """I need you to transcribe all of the text in this image.
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
self.init_llava()
def set_client(self):
if self.is_hf:
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
else:
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
def get_google_credentials(self):
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
return credentials
def init_craft(self):
if 'CRAFT' in self.OCR_option:
from craft_text_detector import load_craftnet_model, load_refinenet_model
try:
self.refine_net = load_refinenet_model(cuda=True)
self.use_cuda = True
except:
self.refine_net = load_refinenet_model(cuda=False)
self.use_cuda = False
if self.use_cuda:
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True)
else:
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False)
def init_llava(self):
if 'LLaVA' in self.OCR_option:
from vouchervision.OCR_llava import OCRllava
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
if self.json_report:
self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}')
if self.model_quant == '4bit':
use_4bit = True
elif self.model_quant == 'full':
use_4bit = False
else:
self.logger.info(f"Provided model quantization invlid. Using 4bit.")
use_4bit = True
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
def init_gemini_vision(self):
pass
def init_gpt4_vision(self):
pass
def detect_text_craft(self):
from craft_text_detector import read_image, get_prediction
# Perform prediction using CRAFT
image = read_image(self.path)
link_threshold = 0.85
text_threshold = 0.4
low_text = 0.4
if self.use_cuda:
self.prediction_result = get_prediction(
image=image,
craft_net=self.craft_net,
refine_net=self.refine_net,
text_threshold=text_threshold,
link_threshold=link_threshold,
low_text=low_text,
cuda=True,
long_size=1280
)
else:
self.prediction_result = get_prediction(
image=image,
craft_net=self.craft_net,
refine_net=self.refine_net,
text_threshold=text_threshold,
link_threshold=link_threshold,
low_text=low_text,
cuda=False,
long_size=1280
)
# Initialize metadata structures
bounds = []
bounds_word = [] # CRAFT gives bounds for text regions, not individual words
text_to_box_mapping = []
bounds_flat = []
height_flat = []
confidences = [] # CRAFT does not provide confidences per character, so this might be uniformly set or estimated
characters = [] # Simulating as CRAFT doesn't provide character-level details
organized_text = ""
total_b = len(self.prediction_result["boxes"])
i=0
# Process each detected text region
for box in self.prediction_result["boxes"]:
i+=1
if self.json_report:
self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}')
vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box]
# Simulate a mapping for the whole detected region as a word
text_to_box_mapping.append({
"vertices": vertices,
"text": "detected_text" # Placeholder, as CRAFT does not provide the text content directly
})
# Assuming each box is a word for the sake of this example
bounds_word.append({"vertices": vertices})
# For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this
# Instead, we create a single large 'character' per detected region
bounds.append({"vertices": vertices})
# Simulate flat bounds and height for each detected region
x_positions = [vertex["x"] for vertex in vertices]
y_positions = [vertex["y"] for vertex in vertices]
min_x, max_x = min(x_positions), max(x_positions)
min_y, max_y = min(y_positions), max(y_positions)
avg_height = max_y - min_y
height_flat.append(avg_height)
# Assuming uniform confidence for all detected regions
confidences.append(1.0) # Placeholder confidence
# Adding dummy character for each box
characters.append("X") # Placeholder character
# Organize text as a single string (assuming each box is a word)
# organized_text += "detected_text " # Placeholder text
# Update class attributes with processed data
self.normal_bounds = bounds
self.normal_bounds_word = bounds_word
self.normal_text_to_box_mapping = text_to_box_mapping
self.normal_bounds_flat = bounds_flat # This would be similar to bounds if not processing characters individually
self.normal_height = height_flat
self.normal_confidences = confidences
self.normal_characters = characters
self.normal_organized_text = organized_text.strip()
def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
CONFIDENCES = 0.80
MAX_NEW_TOKENS = 50
self.OCR_JSON_to_file = {}
ocr_parts = ''
if not do_use_trOCR:
if 'normal' in self.OCR_option:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
# ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}"
ocr_parts = self.normal_organized_text
if 'hand' in self.OCR_option:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
# ocr_parts = ocr_parts + f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
ocr_parts = self.hand_organized_text
# if self.OCR_option in ['both',]:
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
# return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
return ocr_parts
else:
logger.info(f'Supplementing with trOCR')
self.trOCR_texts = []
original_image = Image.open(self.path).convert("RGB")
if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option:
available_bounds = self.normal_bounds_word
elif 'hand' in self.OCR_option:
available_bounds = self.hand_bounds_word
# elif self.OCR_option in ['both',]:
# available_bounds = self.hand_bounds_word
else:
raise
text_to_box_mapping = []
characters = []
height = []
confidences = []
total_b = len(available_bounds)
i=0
for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
i+=1
if self.json_report:
self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}')
vertices = bound["vertices"]
left = min([v["x"] for v in vertices])
top = min([v["y"] for v in vertices])
right = max([v["x"] for v in vertices])
bottom = max([v["y"] for v in vertices])
# Crop image based on Google's bounding box
cropped_image = original_image.crop((left, top, right, bottom))
pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values
# Move pixel values to the appropriate device
pixel_values = pixel_values.to(self.device)
generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
self.trOCR_texts.append(extracted_text)
# For plotting
word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
num_symbols = len(extracted_text)
Yw = max(vertex.get('y') for vertex in vertices)
Yo = Yw - min(vertex.get('y') for vertex in vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
height.append(H)
map_dict = {
"vertices": vertices,
"text": extracted_text # Use the text extracted by trOCR
}
text_to_box_mapping.append(map_dict)
characters.append(extracted_text)
confidences.append(CONFIDENCES)
median_height = statistics.median(height) if height else 0
median_heights = [median_height * 1.5] * len(characters)
self.trOCR_texts = ' '.join(self.trOCR_texts)
self.trOCR_text_to_box_mapping = text_to_box_mapping
self.trOCR_bounds_flat = available_bounds
self.trOCR_height = median_heights
self.trOCR_confidences = confidences
self.trOCR_characters = characters
if 'normal' in self.OCR_option:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
if 'hand' in self.OCR_option:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
# if self.OCR_option in ['both',]:
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
# self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
# self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
if 'CRAFT' in self.OCR_option:
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts
# logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}")
# ocr_parts = ocr_parts + f"\nCRAFT_trOCR:\n{self.trOCR_texts}"
ocr_parts = self.trOCR_texts
return ocr_parts
@staticmethod
def confidence_to_color(confidence):
hue = (confidence - 0.5) * 120 / 0.5
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
return (int(r*255), int(g*255), int(b*255))
def render_text_on_black_image(self, option):
bounds_flat = getattr(self, f'{option}_bounds_flat', [])
heights = getattr(self, f'{option}_height', [])
confidences = getattr(self, f'{option}_confidences', [])
characters = getattr(self, f'{option}_characters', [])
original_image = Image.open(self.path)
width, height = original_image.size
black_image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(black_image)
for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
font_size = int(char_height)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except:
font = ImageFont.load_default().font_variant(size=font_size)
if option == 'trOCR':
color = (0, 170, 255)
else:
color = OCREngine.confidence_to_color(confidence)
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
draw.text(position, character, fill=color, font=font)
return black_image
def merge_images(self, image1, image2):
width1, height1 = image1.size
width2, height2 = image2.size
merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
merged_image.paste(image1, (0, 0))
merged_image.paste(image2, (width1, 0))
return merged_image
def draw_boxes(self, option):
bounds = getattr(self, f'{option}_bounds', [])
bounds_word = getattr(self, f'{option}_bounds_word', [])
confidences = getattr(self, f'{option}_confidences', [])
draw = ImageDraw.Draw(self.image)
width, height = self.image.size
if min([width, height]) > 4000:
line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level
line_width_thin = 1
else:
line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level
line_width_thin = 1 #int((width + height) / 2 * 0.001)
for bound in bounds_word:
draw.polygon(
[
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
],
outline=OCREngine.BBOX_COLOR,
width=line_width_thin
)
# Draw a line segment at the bottom of each handwritten character
for bound, confidence in zip(bounds, confidences):
color = OCREngine.confidence_to_color(confidence)
# Use the bottom two vertices of the bounding box for the line
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)
return self.image
def detect_text(self):
with io.open(self.path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = self.client.document_text_detection(image=image)
texts = response.text_annotations
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
bounds = []
bounds_word = []
text_to_box_mapping = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.normal_cleaned_text = texts[0].description if texts else ''
self.normal_organized_text = organized_text
self.normal_bounds = bounds
self.normal_bounds_word = bounds_word
self.normal_text_to_box_mapping = text_to_box_mapping
self.normal_bounds_flat = bounds_flat
# self.normal_height = median_heights #height_flat
self.normal_height = height_flat
self.normal_confidences = confidences
self.normal_characters = characters
return self.normal_cleaned_text
def detect_handwritten_ocr(self):
with open(self.path, "rb") as image_file:
content = image_file.read()
image = vision_beta.Image(content=content)
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
response = self.client_beta.document_text_detection(image=image, image_context=image_context)
texts = response.text_annotations
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
bounds = []
bounds_word = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
text_to_box_mapping = []
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
self.hand_organized_text = organized_text
self.hand_bounds = bounds
self.hand_bounds_word = bounds_word
self.hand_bounds_flat = bounds_flat
self.hand_text_to_box_mapping = text_to_box_mapping
# self.hand_height = median_heights #height_flat
self.hand_height = height_flat
self.hand_confidences = confidences
self.hand_characters = characters
return self.hand_cleaned_text
def process_image(self, do_create_OCR_helper_image, logger):
# Can stack options, so solitary if statements
self.OCR = 'OCR:\n'
if 'CRAFT' in self.OCR_option:
self.do_use_trOCR = True
self.detect_text_craft()
### Optionally add trOCR to the self.OCR for additional context
if self.double_OCR:
part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
# logger.info(f"CRAFT trOCR:\n{self.OCR}")
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
if self.json_report:
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
try:
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
except:
self.OCR_JSON_to_file = {}
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
if self.double_OCR:
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}"
else:
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}"
# logger.info(f"LLaVA OCR:\n{self.OCR}")
if 'normal' in self.OCR_option or 'hand' in self.OCR_option:
if 'normal' in self.OCR_option:
if self.double_OCR:
part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
if 'hand' in self.OCR_option:
if self.double_OCR:
part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
# if self.OCR_option not in ['normal', 'hand', 'both']:
# self.OCR_option = 'both'
# self.detect_text()
# self.detect_handwritten_ocr()
### Optionally add trOCR to the self.OCR for additional context
if self.do_use_trOCR:
if self.double_OCR:
part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
self.OCR = self.OCR + part_OCR + part_OCR
else:
self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
# logger.info(f"OCR:\n{self.OCR}")
else:
# populate self.OCR_JSON_to_file = {}
_ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option):
self.image = Image.open(self.path)
if 'normal' in self.OCR_option:
image_with_boxes_normal = self.draw_boxes('normal')
text_image_normal = self.render_text_on_black_image('normal')
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)
if 'hand' in self.OCR_option:
image_with_boxes_hand = self.draw_boxes('hand')
text_image_hand = self.render_text_on_black_image('hand')
self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)
if self.do_use_trOCR:
text_image_trOCR = self.render_text_on_black_image('trOCR')
if 'CRAFT' in self.OCR_option:
image_with_boxes_normal = self.draw_boxes('normal')
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR)
### Merge final overlay image
### [original, normal bboxes, normal text]
if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
### [original, hand bboxes, hand text]
elif 'hand' in self.OCR_option:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
### [original, normal bboxes, normal text, hand bboxes, hand text]
else:
self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
if self.do_use_trOCR:
if 'CRAFT' in self.OCR_option:
heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB))
heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB))
self.overlay_image = self.merge_images(self.overlay_image, heat_map_text)
self.overlay_image = self.merge_images(self.overlay_image, heat_map_link)
else:
self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)
else:
self.merged_image_normal = None
self.merged_image_hand = None
self.overlay_image = Image.open(self.path)
try:
from craft_text_detector import empty_cuda_cache
empty_cuda_cache()
except:
pass
def check_for_inappropriate_content(file_stream):
client = vision.ImageAnnotatorClient()
content = file_stream.read()
image = vision.Image(content=content)
response = client.safe_search_detection(image=image)
safe = response.safe_search_annotation
# Check the levels of adult, violence, racy, etc. content.
if (safe.adult > vision.Likelihood.POSSIBLE or
safe.violence > vision.Likelihood.POSSIBLE or
safe.racy > vision.Likelihood.POSSIBLE):
return True # The image violates safe search guidelines.
return False # The image is considered safe.