Spaces:
Running
Running
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
ae215ea
import time, torch, json | |
from langchain.prompts import PromptTemplate | |
from langchain_openai import ChatOpenAI, OpenAI | |
from langchain.schema import HumanMessage | |
from langchain_core.output_parsers import JsonOutputParser | |
from langchain.output_parsers import RetryWithErrorOutputParser | |
from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt | |
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template | |
class OpenAIHandler: | |
RETRY_DELAY = 10 # Wait 10 seconds before retrying | |
MAX_RETRIES = 3 # Maximum number of retries | |
STARTING_TEMP = 0.5 | |
TOKENIZER_NAME = 'gpt-4' | |
VENDOR = 'openai' | |
def __init__(self, cfg, logger, model_name, JSON_dict_structure, is_azure, llm_object): | |
self.cfg = cfg | |
self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO'] | |
self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO'] | |
self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia'] | |
self.logger = logger | |
self.model_name = model_name | |
self.JSON_dict_structure = JSON_dict_structure | |
self.is_azure = is_azure | |
self.llm_object = llm_object | |
self.name_parts = self.model_name.split('-') | |
self.monitor = SystemLoadMonitor(logger) | |
self.has_GPU = torch.cuda.is_available() | |
self.starting_temp = float(self.STARTING_TEMP) | |
self.temp_increment = float(0.2) | |
self.adjust_temp = self.starting_temp | |
# Set up a parser | |
self.parser = JsonOutputParser() | |
self.prompt = PromptTemplate( | |
template="Answer the user query.\n{format_instructions}\n{query}\n", | |
input_variables=["query"], | |
partial_variables={"format_instructions": self.parser.get_format_instructions()}, | |
) | |
self._set_config() | |
def _set_config(self): | |
self.config = {'max_new_tokens': 1024, | |
'temperature': self.starting_temp, | |
'random_seed': 2023, | |
'top_p': 1, | |
} | |
# Adjusting the LLM settings based on whether Azure is used | |
if self.is_azure: | |
self.llm_object.deployment_name = self.model_name | |
self.llm_object.model_name = self.model_name | |
else: | |
self.llm_object = None | |
self._build_model_chain_parser() | |
# Define a function to format the input for azure_call | |
def format_input_for_azure(self, prompt_text): | |
msg = HumanMessage(content=prompt_text.text) | |
# self.llm_object.temperature = self.config.get('temperature') | |
return self.llm_object(messages=[msg]) | |
def _adjust_config(self): | |
new_temp = self.adjust_temp + self.temp_increment | |
self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}') | |
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}') | |
self.adjust_temp += self.temp_increment | |
self.config['temperature'] = self.adjust_temp | |
def _reset_config(self): | |
self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') | |
self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') | |
self.adjust_temp = self.starting_temp | |
self.config['temperature'] = self.starting_temp | |
def _build_model_chain_parser(self): | |
if not self.is_azure and ('instruct' in self.name_parts): | |
# Set up the retry parser with 3 retries | |
self.retry_parser = RetryWithErrorOutputParser.from_llm( | |
# parser=self.parser, llm=self.llm_object if self.is_azure else OpenAI(temperature=self.config.get('temperature'), model=self.model_name), max_retries=self.MAX_RETRIES | |
parser=self.parser, llm=self.llm_object if self.is_azure else OpenAI(model=self.model_name), max_retries=self.MAX_RETRIES | |
) | |
else: | |
# Set up the retry parser with 3 retries | |
self.retry_parser = RetryWithErrorOutputParser.from_llm( | |
# parser=self.parser, llm=self.llm_object if self.is_azure else ChatOpenAI(temperature=self.config.get('temperature'), model=self.model_name), max_retries=self.MAX_RETRIES | |
parser=self.parser, llm=self.llm_object if self.is_azure else ChatOpenAI(model=self.model_name), max_retries=self.MAX_RETRIES | |
) | |
# Prepare the chain | |
if not self.is_azure and ('instruct' in self.name_parts): | |
# self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else OpenAI(temperature=self.config.get('temperature'), model=self.model_name)) | |
self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else OpenAI(model=self.model_name)) | |
else: | |
# self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else ChatOpenAI(temperature=self.config.get('temperature'), model=self.model_name)) | |
self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else ChatOpenAI(model=self.model_name)) | |
def call_llm_api_OpenAI(self, prompt_template, json_report, paths): | |
_____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths | |
self.json_report = json_report | |
self.json_report.set_text(text_main=f'Sending request to {self.model_name}') | |
self.monitor.start_monitoring_usage() | |
nt_in = 0 | |
nt_out = 0 | |
ind = 0 | |
while ind < self.MAX_RETRIES: | |
ind += 1 | |
try: | |
model_kwargs = {"temperature": self.adjust_temp} | |
# Invoke the chain to generate prompt text | |
response = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs}) | |
response_text = response.content if not isinstance(response, str) else response | |
# Use retry_parser to parse the response with retry logic | |
output = self.retry_parser.parse_with_prompt(response_text, prompt_value=prompt_template) | |
if output is None: | |
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response_text}') | |
self._adjust_config() | |
else: | |
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME) | |
nt_out = count_tokens(response_text, self.VENDOR, self.TOKENIZER_NAME) | |
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure) | |
if output is None: | |
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response_text}') | |
self._adjust_config() | |
else: | |
self.monitor.stop_inference_timer() # Starts tool timer too | |
json_report.set_text(text_main=f'Working on WFO, Geolocation, Links') | |
output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki) | |
# output1, WFO_record = validate_taxonomy_WFO(self.tool_WFO, output, replace_if_success_wfo=False) | |
# output2, GEO_record = validate_coordinates_here(self.tool_GEO, output, replace_if_success_geo=False) | |
# validate_wikipedia(self.tool_wikipedia, json_file_path_wiki, output) | |
save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt) | |
self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}") | |
usage_report = self.monitor.stop_monitoring_report_usage() | |
if self.adjust_temp != self.starting_temp: | |
self._reset_config() | |
json_report.set_text(text_main=f'LLM call successful') | |
return output, nt_in, nt_out, WFO_record, GEO_record, usage_report | |
except Exception as e: | |
self.logger.error(f'{e}') | |
self._adjust_config() | |
time.sleep(self.RETRY_DELAY) | |
self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts") | |
self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts') | |
self.monitor.stop_inference_timer() # Starts tool timer too | |
usage_report = self.monitor.stop_monitoring_report_usage() | |
self._reset_config() | |
json_report.set_text(text_main=f'LLM call failed') | |
return None, nt_in, nt_out, None, None, usage_report | |