VoucherVision / vouchervision /LLM_local_MistralAI.py
phyloforfun's picture
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
ae215ea
raw
history blame
9.57 kB
import json, torch, transformers, gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template
'''
Local Pipielines:
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines
'''
class LocalMistralHandler:
RETRY_DELAY = 2 # Wait 2 seconds before retrying
MAX_RETRIES = 5 # Maximum number of retries
STARTING_TEMP = 0.1
TOKENIZER_NAME = None
VENDOR = 'mistral'
MAX_GPU_MONITORING_INTERVAL = 2 # seconds
def __init__(self, cfg, logger, model_name, JSON_dict_structure):
self.cfg = cfg
self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']
self.logger = logger
self.has_GPU = torch.cuda.is_available()
self.monitor = SystemLoadMonitor(logger)
self.model_name = model_name
self.model_id = f"mistralai/{self.model_name}"
name_parts = self.model_name.split('-')
self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json")
self.JSON_dict_structure = JSON_dict_structure
self.starting_temp = float(self.STARTING_TEMP)
self.temp_increment = float(0.2)
self.adjust_temp = self.starting_temp
system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user."
template = """
<s>[INST]{}[/INST]</s>
[INST]{}[/INST]
""".format(system_prompt, "{query}")
# Create a prompt from the template so we can use it with Langchain
self.prompt = PromptTemplate(template=template, input_variables=["query"])
# Set up a parser
self.parser = JsonOutputParser()
self._set_config()
# def _clear_VRAM(self):
# # Clear CUDA cache if it's being used
# if self.has_GPU:
# self.local_model = None
# self.local_model_pipeline = None
# del self.local_model
# del self.local_model_pipeline
# gc.collect() # Explicitly invoke garbage collector
# torch.cuda.empty_cache()
# else:
# self.local_model_pipeline = None
# self.local_model = None
# del self.local_model_pipeline
# del self.local_model
# gc.collect() # Explicitly invoke garbage collector
def _set_config(self):
# self._clear_VRAM()
self.config = {'max_new_tokens': 1024,
'temperature': self.starting_temp,
'seed': 2023,
'top_p': 1,
'top_k': 40,
'do_sample': True,
'n_ctx':4096,
# Activate 4-bit precision base model loading
'use_4bit': True,
# Compute dtype for 4-bit base models
'bnb_4bit_compute_dtype': "float16",
# Quantization type (fp4 or nf4)
'bnb_4bit_quant_type': "nf4",
# Activate nested quantization for 4-bit base models (double quantization)
'use_nested_quant': False,
}
compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') )
self.bnb_config = BitsAndBytesConfig(
load_in_4bit=self.config.get('use_4bit'),
bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'),
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=self.config.get('use_nested_quant'),
)
# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and self.config.get('use_4bit'):
major, _ = torch.cuda.get_device_capability()
if major >= 8:
# print("=" * 80)
# print("Your GPU supports bfloat16: accelerate training with bf16=True")
# print("=" * 80)
self.b_float_opt = torch.bfloat16
else:
self.b_float_opt = torch.float16
self._build_model_chain_parser()
def _adjust_config(self):
new_temp = self.adjust_temp + self.temp_increment
self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
self.adjust_temp += self.temp_increment
def _reset_config(self):
self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
self.adjust_temp = self.starting_temp
def _build_model_chain_parser(self):
self.local_model_pipeline = transformers.pipeline("text-generation",
model=self.model_id,
max_new_tokens=self.config.get('max_new_tokens'),
top_k=self.config.get('top_k'),
top_p=self.config.get('top_p'),
do_sample=self.config.get('do_sample'),
model_kwargs={"torch_dtype": self.b_float_opt,
"load_in_4bit": True,
"quantization_config": self.bnb_config})
self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
# Set up the retry parser with the runnable
self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
# Create an llm chain with LLM and prompt
self.chain = self.prompt | self.local_model # LCEL
def call_llm_local_MistralAI(self, prompt_template, json_report, paths):
_____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths
self.json_report = json_report
self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
self.monitor.start_monitoring_usage()
nt_in = 0
nt_out = 0
ind = 0
while ind < self.MAX_RETRIES:
ind += 1
try:
# Dynamically set the temperature for this specific request
model_kwargs = {"temperature": self.adjust_temp}
# Invoke the chain to generate prompt text
results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})
# Use retry_parser to parse the response with retry logic
output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)
if output is None:
self.logger.error(f'Failed to extract JSON from:\n{results}')
self._adjust_config()
del results
else:
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
if output is None:
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}')
self._adjust_config()
else:
self.monitor.stop_inference_timer() # Starts tool timer too
json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki)
save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt)
self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")
usage_report = self.monitor.stop_monitoring_report_usage()
if self.adjust_temp != self.starting_temp:
self._reset_config()
json_report.set_text(text_main=f'LLM call successful')
del results
return output, nt_in, nt_out, WFO_record, GEO_record, usage_report
except Exception as e:
self.logger.error(f'{e}')
self._adjust_config()
self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')
self.monitor.stop_inference_timer() # Starts tool timer too
usage_report = self.monitor.stop_monitoring_report_usage()
json_report.set_text(text_main=f'LLM call failed')
self._reset_config()
return None, nt_in, nt_out, None, None, usage_report