VoucherVision / vouchervision /LLM_Falcon.py
phyloforfun's picture
Add application file
87c3140
import os, sys, inspect, json, time
# currentdir = os.path.dirname(os.path.abspath(
# inspect.getfile(inspect.currentframe())))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)
# from prompts import PROMPT_PaLM_UMICH_skeleton_all_asia, PROMPT_PaLM_OCR_Organized, PROMPT_PaLM_Redo
# from LLM_PaLM import create_OCR_analog_for_input, num_tokens_from_string
'''
https://docs.ai21.com/docs/python-sdk-with-amazon-bedrock
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/falcon-llms-in-azure-machine-learning/ba-p/3876847
https://github.com/Azure/azureml-examples/blob/main/sdk/python/foundation-models/huggingface/inference/text-generation-streaming/text-generation-streaming-online-endpoint.ipynb
https://ml.azure.com/registries/HuggingFace/models/tiiuae-falcon-40b-instruct/version/12?tid=e66e77b4-5724-44d7-8721-06df160450ce#overview
https://azure.microsoft.com/en-us/products/machine-learning/
'''
# from azure.ai.ml import MLClient
# from azure.identity import (
# DefaultAzureCredential,
# InteractiveBrowserCredential,
# ClientSecretCredential,
# )
# from azure.ai.ml.entities import AmlCompute
# try:
# credential = DefaultAzureCredential()
# credential.get_token("https://management.azure.com/.default")
# except Exception as ex:
# credential = InteractiveBrowserCredential()
# # connect to a workspace
# workspace_ml_client = None
# try:
# workspace_ml_client = MLClient.from_config(credential)
# subscription_id = workspace_ml_client.subscription_id
# workspace = workspace_ml_client.workspace_name
# resource_group = workspace_ml_client.resource_group_name
# except Exception as ex:
# print(ex)
# # Enter details of your workspace
# subscription_id = "<SUBSCRIPTION_ID>"
# resource_group = "<RESOURCE_GROUP>"
# workspace = "<AML_WORKSPACE_NAME>"
# workspace_ml_client = MLClient(
# credential, subscription_id, resource_group, workspace
# )
# # Connect to the HuggingFaceHub registry
# registry_ml_client = MLClient(credential, registry_name="HuggingFace")
# print(registry_ml_client)
'''
def OCR_to_dict_Falcon(logger, OCR, VVE):
# Find a similar example from the domain knowledge
domain_knowledge_example = VVE.query_db(OCR, 4)
similarity = VVE.get_similarity()
domain_knowledge_example_string = json.dumps(domain_knowledge_example)
try:
logger.info(f'Length of OCR raw -- {len(OCR)}')
except:
print(f'Length of OCR raw -- {len(OCR)}')
# Create input: output: for Falcon
# Assuming Falcon requires a similar structure as PaLM
in_list, out_list = create_OCR_analog_for_input(domain_knowledge_example)
# Construct the prompt for Falcon
# Adjust this based on Falcon's requirements
# prompt = PROMPT_Falcon_skeleton(OCR, in_list, out_list)
prompt = PROMPT_PaLM_UMICH_skeleton_all_asia(OCR, in_list, out_list) # must provide examples to PaLM differently than for chatGPT, at least 2 examples
nt = num_tokens_from_string(prompt, "falcon_model_name") # Replace "falcon_model_name" with the appropriate model name for Falcon
try:
logger.info(f'Prompt token length --- {nt}')
except:
print(f'Prompt token length --- {nt}')
# Assuming Falcon has a similar API structure as PaLM
# Adjust the settings based on Falcon's requirements
Falcon_settings = {
'model': 'models/falcon_model_name', # Replace with the appropriate model name for Falcon
'temperature': 0,
'candidate_count': 1,
'top_k': 40,
'top_p': 0.95,
'max_output_tokens': 8000,
'stop_sequences': [],
# Add any other required settings for Falcon
}
# Send the prompt to Falcon for inference
# Adjust the API call based on Falcon's requirements
response = falcon.generate_text(**Falcon_settings, prompt=prompt)
# Process the response from Falcon
if response and response.result:
if isinstance(response.result, (str, bytes)):
response_valid = check_and_redo_JSON(response, Falcon_settings, logger)
else:
response_valid = {}
else:
response_valid = {}
return response_valid
'''