phyloforfun's picture
Add application file
87c3140
raw
history blame contribute delete
616 Bytes
import torch
import torch.nn as nn
from torchsummary import summary
# Load the model
model = torch.load('D:/Dropbox/FieldPrism/fieldprism/yolov5/weights_nano/best.pt')
summary(model['model'] , input_size=(3, 512, 512))
model.load_state_dict(checkpoint['model'])
# Create a dummy input with the same dimensions expected by the model.
# For a YOLO model, it might be something like (batch_size, 3, height, width)
dummy_input = torch.randn(1, 3, 512, 512)
# Get a prediction to inspect the shape
with torch.no_grad():
output = model(dummy_input)
# Print the output shape
print("Output shape:", output.shape)