import os, sys, inspect, json, shutil, cv2, time, glob #imagesize import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from PIL import Image from tqdm import tqdm from time import perf_counter import concurrent.futures from threading import Lock from collections import defaultdict import multiprocessing import torch currentdir = os.path.dirname(inspect.getfile(inspect.currentframe())) parentdir = os.path.dirname(currentdir) sys.path.append(currentdir) from detect import run sys.path.append(parentdir) from landmark_processing import LeafSkeleton from armature_processing import ArmatureSkeleton def detect_plant_components(cfg, logger, dir_home, Project, Dirs): t1_start = perf_counter() logger.name = 'Locating Plant Components' logger.info(f"Detecting plant components in {len(os.listdir(Project.dir_images))} images") try: dir_exisiting_labels = cfg['leafmachine']['project']['use_existing_plant_component_detections'] except: dir_exisiting_labels = None if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 1 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) # Weights folder base dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train') # Detection threshold threshold = cfg['leafmachine']['plant_component_detector']['minimum_confidence_threshold'] detector_version = cfg['leafmachine']['plant_component_detector']['detector_version'] detector_iteration = cfg['leafmachine']['plant_component_detector']['detector_iteration'] detector_weights = cfg['leafmachine']['plant_component_detector']['detector_weights'] weights = os.path.join(dir_weights,'Plant_Detector',detector_version,detector_iteration,'weights',detector_weights) do_save_prediction_overlay_images = not cfg['leafmachine']['plant_component_detector']['do_save_prediction_overlay_images'] ignore_objects = cfg['leafmachine']['plant_component_detector']['ignore_objects_for_overlay'] ignore_objects = ignore_objects or [] if dir_exisiting_labels != None: logger.info("Loading existing plant labels") fetch_labels(dir_exisiting_labels, os.path.join(Dirs.path_plant_components, 'labels')) if len(Project.dir_images) <= 4000: logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000") A = create_dictionary_from_txt(logger, dir_exisiting_labels, 'Detections_Plant_Components', Project) else: logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000") A = create_dictionary_from_txt_parallel(logger, cfg, dir_exisiting_labels, 'Detections_Plant_Components', Project) else: logger.info("Running YOLOv5 to generate plant labels") # run(weights = weights, # source = Project.dir_images, # project = Dirs.path_plant_components, # name = Dirs.run_name, # imgsz = (1280, 1280), # nosave = do_save_prediction_overlay_images, # anno_type = 'Plant_Detector', # conf_thres = threshold, # ignore_objects_for_overlay = ignore_objects, # mode = 'LM2', # LOGGER=logger,) source = Project.dir_images project = Dirs.path_plant_components name = Dirs.run_name imgsz = (1280, 1280) nosave = do_save_prediction_overlay_images anno_type = 'Plant_Detector' conf_thres = threshold ignore_objects_for_overlay = ignore_objects mode = 'LM2' LOGGER = logger with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type, conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in range(num_workers)] for future in concurrent.futures.as_completed(futures): try: _ = future.result() except Exception as e: logger.error(f'Error in thread: {e}') continue t2_stop = perf_counter() logger.info(f"[Plant components detection elapsed time] {round(t2_stop - t1_start)} seconds") logger.info(f"Threads [{num_workers}]") if len(Project.dir_images) <= 4000: logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000") A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_plant_components, 'labels'), 'Detections_Plant_Components', Project) else: logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000") A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_plant_components, 'labels'), 'Detections_Plant_Components', Project) dict_to_json(Project.project_data, Dirs.path_plant_components, 'Detections_Plant_Components.json') t1_stop = perf_counter() logger.info(f"[Processing plant components elapsed time] {round(t1_stop - t1_start)} seconds") torch.cuda.empty_cache() return Project def detect_archival_components(cfg, logger, dir_home, Project, Dirs, is_real_run=False, progress_report=None): if not cfg['leafmachine']['use_RGB_label_images']: logger.name = 'Skipping LeafMachine2 Label Detection' logger.info(f"Full image will be used instead of the label collage") if is_real_run: progress_report.update_overall(f"Skipping LeafMachine2 Label Detection") else: t1_start = perf_counter() logger.name = 'Locating Archival Components' logger.info(f"Detecting archival components in {len(os.listdir(Project.dir_images))} images") if is_real_run: progress_report.update_overall(f"Creating LeafMachine2 Label Collage") try: dir_exisiting_labels = cfg['leafmachine']['project']['use_existing_archival_component_detections'] except: dir_exisiting_labels = None if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 1 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) # Weights folder base dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train') # Detection threshold threshold = cfg['leafmachine']['archival_component_detector']['minimum_confidence_threshold'] detector_version = cfg['leafmachine']['archival_component_detector']['detector_version'] detector_iteration = cfg['leafmachine']['archival_component_detector']['detector_iteration'] detector_weights = cfg['leafmachine']['archival_component_detector']['detector_weights'] weights = os.path.join(dir_weights,'Archival_Detector',detector_version,detector_iteration,'weights',detector_weights) do_save_prediction_overlay_images = not cfg['leafmachine']['archival_component_detector']['do_save_prediction_overlay_images'] ignore_objects = cfg['leafmachine']['archival_component_detector']['ignore_objects_for_overlay'] ignore_objects = ignore_objects or [] if dir_exisiting_labels != None: logger.info("Loading existing archival labels") fetch_labels(dir_exisiting_labels, os.path.join(Dirs.path_archival_components, 'labels')) if len(Project.dir_images) <= 4000: logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000") A = create_dictionary_from_txt(logger, dir_exisiting_labels, 'Detections_Archival_Components', Project) else: logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000") A = create_dictionary_from_txt_parallel(logger, cfg, dir_exisiting_labels, 'Detections_Archival_Components', Project) else: logger.info("Running YOLOv5 to generate archival labels") # run(weights = weights, # source = Project.dir_images, # project = Dirs.path_archival_components, # name = Dirs.run_name, # imgsz = (1280, 1280), # nosave = do_save_prediction_overlay_images, # anno_type = 'Archival_Detector', # conf_thres = threshold, # ignore_objects_for_overlay = ignore_objects, # mode = 'LM2', # LOGGER=logger) # split the image paths into 4 chunks source = Project.dir_images project = Dirs.path_archival_components name = Dirs.run_name imgsz = (1280, 1280) nosave = do_save_prediction_overlay_images anno_type = 'Archival_Detector' conf_thres = threshold ignore_objects_for_overlay = ignore_objects mode = 'LM2' LOGGER = logger with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type, conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in range(num_workers)] for future in concurrent.futures.as_completed(futures): try: _ = future.result() except Exception as e: logger.error(f'Error in thread: {e}') continue t2_stop = perf_counter() logger.info(f"[Archival components detection elapsed time] {round(t2_stop - t1_start)} seconds") logger.info(f"Threads [{num_workers}]") if len(Project.dir_images) <= 4000: logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000") A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_archival_components, 'labels'), 'Detections_Archival_Components', Project) else: logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000") A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_archival_components, 'labels'), 'Detections_Archival_Components', Project) dict_to_json(Project.project_data, Dirs.path_archival_components, 'Detections_Archival_Components.json') t1_stop = perf_counter() logger.info(f"[Processing archival components elapsed time] {round(t1_stop - t1_start)} seconds") torch.cuda.empty_cache() return Project def detect_armature_components(cfg, logger, dir_home, Project, Dirs): t1_start = perf_counter() logger.name = 'Locating Armature Components' logger.info(f"Detecting armature components in {len(os.listdir(Project.dir_images))} images") if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 1 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) # Weights folder base dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train') # Detection threshold threshold = cfg['leafmachine']['armature_component_detector']['minimum_confidence_threshold'] detector_version = cfg['leafmachine']['armature_component_detector']['detector_version'] detector_iteration = cfg['leafmachine']['armature_component_detector']['detector_iteration'] detector_weights = cfg['leafmachine']['armature_component_detector']['detector_weights'] weights = os.path.join(dir_weights,'Armature_Detector',detector_version,detector_iteration,'weights',detector_weights) do_save_prediction_overlay_images = not cfg['leafmachine']['armature_component_detector']['do_save_prediction_overlay_images'] ignore_objects = cfg['leafmachine']['armature_component_detector']['ignore_objects_for_overlay'] ignore_objects = ignore_objects or [] logger.info("Running YOLOv5 to generate armature labels") source = Project.dir_images project = Dirs.path_armature_components name = Dirs.run_name imgsz = (1280, 1280) nosave = do_save_prediction_overlay_images anno_type = 'Armature_Detector' conf_thres = threshold ignore_objects_for_overlay = ignore_objects mode = 'LM2' LOGGER = logger with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type, conf_thres, 10, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in range(num_workers)] for future in concurrent.futures.as_completed(futures): try: _ = future.result() except Exception as e: logger.error(f'Error in thread: {e}') continue t2_stop = perf_counter() logger.info(f"[Plant components detection elapsed time] {round(t2_stop - t1_start)} seconds") logger.info(f"Threads [{num_workers}]") if len(Project.dir_images) <= 4000: logger.debug("Single-threaded create_dictionary_from_txt() len(Project.dir_images) <= 4000") A = create_dictionary_from_txt(logger, os.path.join(Dirs.path_armature_components, 'labels'), 'Detections_Armature_Components', Project) else: logger.debug(f"Multi-threaded with ({str(cfg['leafmachine']['project']['num_workers'])}) threads create_dictionary_from_txt() len(Project.dir_images) > 4000") A = create_dictionary_from_txt_parallel(logger, cfg, os.path.join(Dirs.path_armature_components, 'labels'), 'Detections_Armature_Components', Project) dict_to_json(Project.project_data, Dirs.path_armature_components, 'Detections_Armature_Components.json') t1_stop = perf_counter() logger.info(f"[Processing armature components elapsed time] {round(t1_stop - t1_start)} seconds") torch.cuda.empty_cache() return Project ''' RUN IN PARALLEL''' def run_in_parallel(weights, source, project, name, imgsz, nosave, anno_type, conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, chunk, n_workers): num_files = len(os.listdir(source)) LOGGER.info(f"The number of worker threads: ({n_workers}), number of files ({num_files}).") chunk_size = len(os.listdir(source)) // n_workers start = chunk * chunk_size end = start + chunk_size if chunk < (n_workers-1) else len(os.listdir(source)) sub_source = [os.path.join(source, f) for f in os.listdir(source)[start:end] if f.lower().endswith('.jpg')] run(weights=weights, source=sub_source, project=project, name=name, imgsz=imgsz, nosave=nosave, anno_type=anno_type, conf_thres=conf_thres, ignore_objects_for_overlay=ignore_objects_for_overlay, mode=mode, LOGGER=LOGGER) ''' RUN IN PARALLEL''' ###### Multi-thread NOTE this works, but unless there are several thousand images, it will be slower def process_file(logger, file, dir_components, component, Project, lock): file_name = str(file.split('.')[0]) with open(os.path.join(dir_components, file), "r") as f: with lock: Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] try: image_path = glob.glob(os.path.join(Project.dir_images, file_name + '.*'))[0] name_ext = os.path.basename(image_path) with Image.open(image_path) as im: _, ext = os.path.splitext(name_ext) if ext not in ['.jpg']: im = im.convert('RGB') im.save(os.path.join(Project.dir_images, file_name) + '.jpg', quality=100) # file_name += '.jpg' width, height = im.size except Exception as e: print(f"Unable to get image dimensions. Error: {e}") logger.info(f"Unable to get image dimensions. Error: {e}") width, height = None, None if width and height: Project.project_data[file_name]['height'] = int(height) Project.project_data[file_name]['width'] = int(width) def create_dictionary_from_txt_parallel(logger, cfg, dir_components, component, Project): if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 4 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) files = [file for file in os.listdir(dir_components) if file.endswith(".txt")] lock = Lock() with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [] for file in files: futures.append(executor.submit(process_file, logger, file, dir_components, component, Project, lock)) for future in concurrent.futures.as_completed(futures): pass return Project.project_data ###### # Single threaded def create_dictionary_from_txt(logger, dir_components, component, Project): # dict_labels = {} for file in tqdm(os.listdir(dir_components), desc="Loading Annotations", colour='green'): if file.endswith(".txt"): file_name = str(file.split('.')[0]) with open(os.path.join(dir_components, file), "r") as f: # dict_labels[file] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] try: image_path = glob.glob(os.path.join(Project.dir_images, file_name + '.*'))[0] name_ext = os.path.basename(image_path) with Image.open(image_path) as im: _, ext = os.path.splitext(name_ext) if ext not in ['.jpg']: im = im.convert('RGB') im.save(os.path.join(Project.dir_images, file_name) + '.jpg', quality=100) # file_name += '.jpg' width, height = im.size except Exception as e: # print(f"Unable to get image dimensions. Error: {e}") logger.info(f"Unable to get image dimensions. Error: {e}") width, height = None, None if width and height: Project.project_data[file_name]['height'] = int(height) Project.project_data[file_name]['width'] = int(width) # for key, value in dict_labels.items(): # print(f'{key} --> {value}') return Project.project_data # old below '''def create_dictionary_from_txt(dir_components, component, Project): # dict_labels = {} for file in os.listdir(dir_components): if file.endswith(".txt"): file_name = str(file.split('.')[0]) with open(os.path.join(dir_components, file), "r") as f: # dict_labels[file] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] Project.project_data[file_name][component] = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] try: width, height = imagesize.get(os.path.join(Project.dir_images, '.'.join([file_name,'jpg']))) except Exception as e: print(f"Image not in 'jpg' format. Trying 'jpeg'. Note that other formats are not supported.{e}") width, height = imagesize.get(os.path.join(Project.dir_images, '.'.join([file_name,'jpeg']))) Project.project_data[file_name]['height'] = int(height) Project.project_data[file_name]['width'] = int(width) # for key, value in dict_labels.items(): # print(f'{key} --> {value}') return Project.project_data''' def dict_to_json(dict_labels, dir_components, name_json): dir_components = os.path.join(dir_components, 'JSON') with open(os.path.join(dir_components, name_json), "w") as outfile: json.dump(dict_labels, outfile) def fetch_labels(dir_exisiting_labels, new_dir): shutil.copytree(dir_exisiting_labels, new_dir) '''Landmarks - uses YOLO, but works differently than above. A hybrid between segmentation and component detector''' def detect_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, segmentation_complete): start_t = perf_counter() logger.name = f'[BATCH {batch+1} Detect Landmarks]' logger.info(f'Detecting landmarks for batch {batch+1} of {n_batches}') landmark_whole_leaves = cfg['leafmachine']['landmark_detector']['landmark_whole_leaves'] landmark_partial_leaves = cfg['leafmachine']['landmark_detector']['landmark_partial_leaves'] landmarks_whole_leaves_props = {} landmarks_whole_leaves_overlay = {} landmarks_partial_leaves_props = {} landmarks_partial_leaves_overlay = {} if landmark_whole_leaves: run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Whole_Leaves', segmentation_complete) if landmark_partial_leaves: run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Partial_Leaves', segmentation_complete) # if cfg['leafmachine']['leaf_segmentation']['segment_whole_leaves']: # landmarks_whole_leaves_props_batch, landmarks_whole_leaves_overlay_batch = run_landmarks(Instance_Detector_Whole, Project.project_data_list[batch], 0, # "Segmentation_Whole_Leaf", "Whole_Leaf_Cropped", cfg, Project, Dirs, batch, n_batches)#, start+1, end) # landmarks_whole_leaves_props.update(landmarks_whole_leaves_props_batch) # landmarks_whole_leaves_overlay.update(landmarks_whole_leaves_overlay_batch) # if cfg['leafmachine']['leaf_segmentation']['segment_partial_leaves']: # landmarks_partial_leaves_props_batch, landmarks_partial_leaves_overlay_batch = run_landmarks(Instance_Detector_Partial, Project.project_data_list[batch], 1, # "Segmentation_Partial_Leaf", "Partial_Leaf_Cropped", cfg, Project, Dirs, batch, n_batches)#, start+1, end) # landmarks_partial_leaves_props.update(landmarks_partial_leaves_props_batch) # landmarks_partial_leaves_overlay.update(landmarks_partial_leaves_overlay_batch) end_t = perf_counter() logger.info(f'Batch {batch+1}/{n_batches}: Landmark Detection Duration --> {round((end_t - start_t)/60)} minutes') return Project def detect_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, segmentation_complete): start_t = perf_counter() logger.name = f'[BATCH {batch+1} Detect Armature]' logger.info(f'Detecting armature for batch {batch+1} of {n_batches}') landmark_armature = cfg['leafmachine']['modules']['armature'] landmarks_armature_props = {} landmarks_armature_overlay = {} if landmark_armature: run_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, 'Landmarks_Armature', segmentation_complete) end_t = perf_counter() logger.info(f'Batch {batch+1}/{n_batches}: Armature Detection Duration --> {round((end_t - start_t)/60)} minutes') return Project def run_armature(cfg, logger, dir_home, Project, batch, n_batches, Dirs, leaf_type, segmentation_complete): logger.info('Detecting armature landmarks from scratch') if leaf_type == 'Landmarks_Armature': dir_overlay = os.path.join(Dirs.landmarks_armature_overlay, ''.join(['batch_',str(batch+1)])) # if not segmentation_complete: # If segmentation was run, then don't redo the unpack, just do the crop into the temp folder if leaf_type == 'Landmarks_Armature': # TODO THE 0 is for prickles. For spines I'll need to add a 1 like with partial_leaves or just do it for all Project.project_data_list[batch] = unpack_class_from_components_armature(Project.project_data_list[batch], 0, 'Armature_YOLO', 'Armature_BBoxes', Project) Project.project_data_list[batch], dir_temp = crop_images_to_bbox_armature(Project.project_data_list[batch], 0, 'Armature_Cropped', "Armature_BBoxes", Project, Dirs, True, cfg) # Weights folder base dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train') # Detection threshold threshold = cfg['leafmachine']['landmark_detector_armature']['minimum_confidence_threshold'] detector_version = cfg['leafmachine']['landmark_detector_armature']['detector_version'] detector_iteration = cfg['leafmachine']['landmark_detector_armature']['detector_iteration'] detector_weights = cfg['leafmachine']['landmark_detector_armature']['detector_weights'] weights = os.path.join(dir_weights,'Landmark_Detector_YOLO',detector_version,detector_iteration,'weights',detector_weights) do_save_prediction_overlay_images = not cfg['leafmachine']['landmark_detector_armature']['do_save_prediction_overlay_images'] ignore_objects = cfg['leafmachine']['landmark_detector_armature']['ignore_objects_for_overlay'] ignore_objects = ignore_objects or [] if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 1 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) has_images = False if len(os.listdir(dir_temp)) > 0: has_images = True source = dir_temp project = dir_overlay name = Dirs.run_name imgsz = (1280, 1280) nosave = do_save_prediction_overlay_images anno_type = 'Armature_Detector' conf_thres = threshold line_thickness = 2 ignore_objects_for_overlay = ignore_objects mode = 'Landmark' LOGGER = logger # Initialize a Lock object to ensure thread safety lock = Lock() with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type, conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in range(num_workers)] for future in concurrent.futures.as_completed(futures): try: _ = future.result() except Exception as e: logger.error(f'Error in thread: {e}') continue with lock: if has_images: dimensions_dict = get_cropped_dimensions(dir_temp) A = add_to_dictionary_from_txt_armature(cfg, logger, Dirs, leaf_type, os.path.join(dir_overlay, 'labels'), leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches) else: # TODO add empty placeholder to the image data pass # delete the temp dir try: shutil.rmtree(dir_temp) except: try: time.sleep(5) shutil.rmtree(dir_temp) except: try: time.sleep(5) shutil.rmtree(dir_temp) except: pass torch.cuda.empty_cache() return Project def run_landmarks(cfg, logger, dir_home, Project, batch, n_batches, Dirs, leaf_type, segmentation_complete): use_existing_landmark_detections = cfg['leafmachine']['landmark_detector']['use_existing_landmark_detections'] if use_existing_landmark_detections is None: logger.info('Detecting landmarks from scratch') if leaf_type == 'Landmarks_Whole_Leaves': dir_overlay = os.path.join(Dirs.landmarks_whole_leaves_overlay, ''.join(['batch_',str(batch+1)])) elif leaf_type == 'Landmarks_Partial_Leaves': dir_overlay = os.path.join(Dirs.landmarks_partial_leaves_overlay, ''.join(['batch_',str(batch+1)])) # if not segmentation_complete: # If segmentation was run, then don't redo the unpack, just do the crop into the temp folder if leaf_type == 'Landmarks_Whole_Leaves': Project.project_data_list[batch] = unpack_class_from_components(Project.project_data_list[batch], 0, 'Whole_Leaf_BBoxes_YOLO', 'Whole_Leaf_BBoxes', Project) Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 0, 'Whole_Leaf_Cropped', "Whole_Leaf_BBoxes", Project, Dirs) elif leaf_type == 'Landmarks_Partial_Leaves': Project.project_data_list[batch] = unpack_class_from_components(Project.project_data_list[batch], 1, 'Partial_Leaf_BBoxes_YOLO', 'Partial_Leaf_BBoxes', Project) Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 1, 'Partial_Leaf_Cropped', "Partial_Leaf_BBoxes", Project, Dirs) # else: # if leaf_type == 'Landmarks_Whole_Leaves': # Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 0, 'Whole_Leaf_Cropped', "Whole_Leaf_BBoxes", Project, Dirs) # elif leaf_type == 'Landmarks_Partial_Leaves': # Project.project_data_list[batch], dir_temp = crop_images_to_bbox(Project.project_data_list[batch], 1, 'Partial_Leaf_Cropped', "Partial_Leaf_BBoxes", Project, Dirs) # Weights folder base dir_weights = os.path.join(dir_home, 'leafmachine2', 'component_detector','runs','train') # Detection threshold threshold = cfg['leafmachine']['landmark_detector']['minimum_confidence_threshold'] detector_version = cfg['leafmachine']['landmark_detector']['detector_version'] detector_iteration = cfg['leafmachine']['landmark_detector']['detector_iteration'] detector_weights = cfg['leafmachine']['landmark_detector']['detector_weights'] weights = os.path.join(dir_weights,'Landmark_Detector_YOLO',detector_version,detector_iteration,'weights',detector_weights) do_save_prediction_overlay_images = not cfg['leafmachine']['landmark_detector']['do_save_prediction_overlay_images'] ignore_objects = cfg['leafmachine']['landmark_detector']['ignore_objects_for_overlay'] ignore_objects = ignore_objects or [] if cfg['leafmachine']['project']['num_workers'] is None: num_workers = 1 else: num_workers = int(cfg['leafmachine']['project']['num_workers']) has_images = False if len(os.listdir(dir_temp)) > 0: has_images = True # run(weights = weights, # source = dir_temp, # project = dir_overlay, # name = Dirs.run_name, # imgsz = (1280, 1280), # nosave = do_save_prediction_overlay_images, # anno_type = 'Landmark_Detector_YOLO', # conf_thres = threshold, # line_thickness = 2, # ignore_objects_for_overlay = ignore_objects, # mode = 'Landmark') source = dir_temp project = dir_overlay name = Dirs.run_name imgsz = (1280, 1280) nosave = do_save_prediction_overlay_images anno_type = 'Landmark_Detector' conf_thres = threshold line_thickness = 2 ignore_objects_for_overlay = ignore_objects mode = 'Landmark' LOGGER = logger # Initialize a Lock object to ensure thread safety lock = Lock() with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(run_in_parallel, weights, source, project, name, imgsz, nosave, anno_type, conf_thres, line_thickness, ignore_objects_for_overlay, mode, LOGGER, i, num_workers) for i in range(num_workers)] for future in concurrent.futures.as_completed(futures): try: _ = future.result() except Exception as e: logger.error(f'Error in thread: {e}') continue with lock: if has_images: dimensions_dict = get_cropped_dimensions(dir_temp) A = add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, os.path.join(dir_overlay, 'labels'), leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches) else: # TODO add empty placeholder to the image data pass else: logger.info('Loading existing landmark annotations') dir_temp = os.path.join(use_existing_landmark_detections, f'batch_{str(batch+1)}', 'labels') dimensions_dict = get_cropped_dimensions(dir_temp) A = add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, use_existing_landmark_detections, leaf_type, Project, dimensions_dict, dir_temp, batch, n_batches) # delete the temp dir try: shutil.rmtree(dir_temp) except: try: time.sleep(5) shutil.rmtree(dir_temp) except: try: time.sleep(5) shutil.rmtree(dir_temp) except: pass torch.cuda.empty_cache() return Project '''def add_to_dictionary_from_txt(cfg, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp): # dict_labels = {} for file in os.listdir(dir_components): file_name = str(file.split('.')[0]) file_name_parent = file_name.split('__')[0] Project.project_data[file_name_parent][component] = {} if file.endswith(".txt"): with open(os.path.join(dir_components, file), "r") as f: all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] Project.project_data[file_name_parent][component][file_name] = all_points height = dimensions_dict[file_name][0] width = dimensions_dict[file_name][1] Leaf_Skeleton = LeafSkeleton(cfg, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) QC_add = Leaf_Skeleton.get_QC()''' return Project.project_data def add_to_dictionary_from_txt_armature(cfg, logger, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp, batch, n_batches): dpi = cfg['leafmachine']['overlay']['overlay_dpi'] if leaf_type == 'Landmarks_Armature': logger.info(f'Detecting landmarks armature') pdf_path = os.path.join(Dirs.landmarks_armature_overlay_QC, ''.join(['landmarks_armature_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf'])) pdf_path_final = os.path.join(Dirs.landmarks_armature_overlay_final, ''.join(['landmarks_armature_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf'])) ### FINAL # dict_labels = {} fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi row, col = 0, 0 with PdfPages(pdf_path_final) as pdf: for file in os.listdir(dir_components): file_name = str(file.split('.')[0]) file_name_parent = file_name.split('__')[0] # Project.project_data_list[batch][file_name_parent][component] = [] if file_name_parent in Project.project_data_list[batch]: if file.endswith(".txt"): with open(os.path.join(dir_components, file), "r") as f: all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] # Project.project_data_list[batch][file_name_parent][component][file_name] = all_points height = dimensions_dict[file_name][0] width = dimensions_dict[file_name][1] Armature_Skeleton = ArmatureSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) Project = add_armature_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, Armature_Skeleton) final_add = cv2.cvtColor(Armature_Skeleton.get_final(), cv2.COLOR_BGR2RGB) # Add image to the current subplot ax = fig.add_subplot(5, 3, row * 3 + col + 1) ax.imshow(final_add) ax.axis('off') col += 1 if col == 3: col = 0 row += 1 if row == 5: row = 0 pdf.savefig(fig) # Save the current page fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page else: pass if row != 0 or col != 0: pdf.savefig(fig) # Save the remaining images on the last page def add_to_dictionary_from_txt(cfg, logger, Dirs, leaf_type, dir_components, component, Project, dimensions_dict, dir_temp, batch, n_batches): dpi = cfg['leafmachine']['overlay']['overlay_dpi'] if leaf_type == 'Landmarks_Whole_Leaves': logger.info(f'Detecting landmarks whole leaves') pdf_path = os.path.join(Dirs.landmarks_whole_leaves_overlay_QC, ''.join(['landmarks_whole_leaves_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf'])) pdf_path_final = os.path.join(Dirs.landmarks_whole_leaves_overlay_final, ''.join(['landmarks_whole_leaves_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf'])) elif leaf_type == 'Landmarks_Partial_Leaves': logger.info(f'Detecting landmarks partial leaves') pdf_path = os.path.join(Dirs.landmarks_partial_leaves_overlay_QC, ''.join(['landmarks_partial_leaves_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf'])) pdf_path_final = os.path.join(Dirs.landmarks_partial_leaves_overlay_final, ''.join(['landmarks_partial_leaves_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf'])) elif leaf_type == 'Landmarks_Armature': logger.info(f'Detecting landmarks armature') pdf_path = os.path.join(Dirs.landmarks_armature_overlay_QC, ''.join(['landmarks_armature_overlay_QC__',str(batch+1), 'of', str(n_batches), '.pdf'])) pdf_path_final = os.path.join(Dirs.landmarks_armature_overlay_final, ''.join(['landmarks_armature_overlay_final__',str(batch+1), 'of', str(n_batches), '.pdf'])) ### FINAL # dict_labels = {} fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi row, col = 0, 0 with PdfPages(pdf_path_final) as pdf: for file in os.listdir(dir_components): file_name = str(file.split('.')[0]) file_name_parent = file_name.split('__')[0] # Project.project_data_list[batch][file_name_parent][component] = [] if file_name_parent in Project.project_data_list[batch]: if file.endswith(".txt"): with open(os.path.join(dir_components, file), "r") as f: all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] # Project.project_data_list[batch][file_name_parent][component][file_name] = all_points height = dimensions_dict[file_name][0] width = dimensions_dict[file_name][1] Leaf_Skeleton = LeafSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) Project = add_leaf_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, Leaf_Skeleton) final_add = cv2.cvtColor(Leaf_Skeleton.get_final(), cv2.COLOR_BGR2RGB) # Add image to the current subplot ax = fig.add_subplot(5, 3, row * 3 + col + 1) ax.imshow(final_add) ax.axis('off') col += 1 if col == 3: col = 0 row += 1 if row == 5: row = 0 pdf.savefig(fig) # Save the current page fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page else: pass if row != 0 or col != 0: pdf.savefig(fig) # Save the remaining images on the last page ### QC '''do_save_QC_pdf = False # TODO refine this if do_save_QC_pdf: # dict_labels = {} fig = plt.figure(figsize=(8.27, 11.69), dpi=dpi) # A4 size, 300 dpi row, col = 0, 0 with PdfPages(pdf_path) as pdf: for file in os.listdir(dir_components): file_name = str(file.split('.')[0]) file_name_parent = file_name.split('__')[0] if file_name_parent in Project.project_data_list[batch]: if file.endswith(".txt"): with open(os.path.join(dir_components, file), "r") as f: all_points = [[int(line.split()[0])] + list(map(float, line.split()[1:])) for line in f] Project.project_data_list[batch][file_name_parent][component][file_name] = all_points height = dimensions_dict[file_name][0] width = dimensions_dict[file_name][1] Leaf_Skeleton = LeafSkeleton(cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) QC_add = cv2.cvtColor(Leaf_Skeleton.get_QC(), cv2.COLOR_BGR2RGB) # Add image to the current subplot ax = fig.add_subplot(5, 3, row * 3 + col + 1) ax.imshow(QC_add) ax.axis('off') col += 1 if col == 3: col = 0 row += 1 if row == 5: row = 0 pdf.savefig(fig) # Save the current page fig = plt.figure(figsize=(8.27, 11.69), dpi=300) # Create a new page else: pass if row != 0 or col != 0: pdf.savefig(fig) # Save the remaining images on the last page''' def add_armature_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, ARM): if ARM.is_complete: try: Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'complete'}, {'armature': ARM}]}) except: Project.project_data_list[batch][file_name_parent][component] = [] Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'complete'}, {'armature': ARM}]}) else: try: Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'incomplete'}, {'armature': ARM}]}) except: Project.project_data_list[batch][file_name_parent][component] = [] Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'armature_status': 'incomplete'}, {'armature': ARM}]}) return Project def add_leaf_skeleton_to_project(cfg, logger, Project, batch, file_name_parent, component, Dirs, leaf_type, all_points, height, width, dir_temp, file_name, LS): if LS.is_complete_leaf: try: Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'complete_leaf'}, {'landmarks': LS}]}) except: Project.project_data_list[batch][file_name_parent][component] = [] Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'complete_leaf'}, {'landmarks': LS}]}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'complete_leaf'}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS}) elif LS.is_leaf_no_width: try: Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'leaf_no_width'}, {'landmarks': LS}]}) except: Project.project_data_list[batch][file_name_parent][component] = [] Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'leaf_no_width'}, {'landmarks': LS}]}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'leaf_no_width'}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS}) else: try: Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'incomplete'}, {'landmarks': LS}]}) except: Project.project_data_list[batch][file_name_parent][component] = [] Project.project_data_list[batch][file_name_parent][component].append({file_name: [{'landmark_status': 'incomplete'}, {'landmarks': LS}]}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmark_status': 'incomplete'}) # Project.project_data_list[batch][file_name_parent][component][file_name].update({'landmarks': LS}) return Project ''' self.determine_lamina_length('final') # Lamina tip and base if self.has_lamina_tip: cv2.circle(self.image_final, self.lamina_tip, radius=4, color=(0, 255, 0), thickness=2) cv2.circle(self.image_final, self.lamina_tip, radius=2, color=(255, 255, 255), thickness=-1) if self.has_lamina_base: cv2.circle(self.image_final, self.lamina_base, radius=4, color=(255, 0, 0), thickness=2) cv2.circle(self.image_final, self.lamina_base, radius=2, color=(255, 255, 255), thickness=-1) # Apex angle # if self.apex_center != []: # cv2.circle(self.image_final, self.apex_center, radius=3, color=(0, 255, 0), thickness=-1) if self.apex_left != []: cv2.circle(self.image_final, self.apex_left, radius=3, color=(255, 0, 0), thickness=-1) if self.apex_right != []: cv2.circle(self.image_final, self.apex_right, radius=3, color=(0, 0, 255), thickness=-1) # Base angle # if self.base_center: # cv2.circle(self.image_final, self.base_center, radius=3, color=(0, 255, 0), thickness=-1) if self.base_left: cv2.circle(self.image_final, self.base_left, radius=3, color=(255, 0, 0), thickness=-1) if self.base_right: cv2.circle(self.image_final, self.base_right, radius=3, color=(0, 0, 255), thickness=-1) # Draw line of fit for point in self.width_infer: ''' def get_cropped_dimensions(dir_temp): dimensions_dict = {} for file_name in os.listdir(dir_temp): if file_name.endswith(".jpg"): img = cv2.imread(os.path.join(dir_temp, file_name)) height, width, channels = img.shape stem = os.path.splitext(file_name)[0] dimensions_dict[stem] = (height, width) return dimensions_dict def unpack_class_from_components_armature(dict_big, cls, dict_name_yolo, dict_name_location, Project): # Get the dict that contains plant parts, find the whole leaves for filename, value in dict_big.items(): if "Detections_Armature_Components" in value: filtered_components = [val for val in value["Detections_Armature_Components"] if val[0] == cls] value[dict_name_yolo] = filtered_components for filename, value in dict_big.items(): if "Detections_Armature_Components" in value: filtered_components = [val for val in value["Detections_Armature_Components"] if val[0] == cls] height = value['height'] width = value['width'] converted_list = [[convert_index_to_class_armature(val[0]), int((val[1] * width) - ((val[3] * width) / 2)), int((val[2] * height) - ((val[4] * height) / 2)), int(val[3] * width) + int((val[1] * width) - ((val[3] * width) / 2)), int(val[4] * height) + int((val[2] * height) - ((val[4] * height) / 2))] for val in filtered_components] # Verify that the crops are correct # img = Image.open(os.path.join(Project., '.'.join([filename,'jpg']))) # for d in converted_list: # img_crop = img.crop((d[1], d[2], d[3], d[4])) # img_crop.show() value[dict_name_location] = converted_list # print(dict) return dict_big def unpack_class_from_components(dict_big, cls, dict_name_yolo, dict_name_location, Project): # Get the dict that contains plant parts, find the whole leaves for filename, value in dict_big.items(): if "Detections_Plant_Components" in value: filtered_components = [val for val in value["Detections_Plant_Components"] if val[0] == cls] value[dict_name_yolo] = filtered_components for filename, value in dict_big.items(): if "Detections_Plant_Components" in value: filtered_components = [val for val in value["Detections_Plant_Components"] if val[0] == cls] height = value['height'] width = value['width'] converted_list = [[convert_index_to_class(val[0]), int((val[1] * width) - ((val[3] * width) / 2)), int((val[2] * height) - ((val[4] * height) / 2)), int(val[3] * width) + int((val[1] * width) - ((val[3] * width) / 2)), int(val[4] * height) + int((val[2] * height) - ((val[4] * height) / 2))] for val in filtered_components] # Verify that the crops are correct # img = Image.open(os.path.join(Project., '.'.join([filename,'jpg']))) # for d in converted_list: # img_crop = img.crop((d[1], d[2], d[3], d[4])) # img_crop.show() value[dict_name_location] = converted_list # print(dict) return dict_big def crop_images_to_bbox_armature(dict_big, cls, dict_name_cropped, dict_from, Project, Dirs, do_upscale=False, cfg=None): dir_temp = os.path.join(Dirs.landmarks, 'TEMP_landmarks') os.makedirs(dir_temp, exist_ok=True) # For each image, iterate through the whole leaves, segment, report data back to dict_plant_components for filename, value in dict_big.items(): value[dict_name_cropped] = [] if dict_from in value: bboxes_whole_leaves = [val for val in value[dict_from] if val[0] == convert_index_to_class_armature(cls)] if len(bboxes_whole_leaves) == 0: m = str(''.join(['No objects for class ', convert_index_to_class_armature(0), ' were found'])) # Print_Verbose(cfg, 3, m).plain() else: try: img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpg']))) # img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpg']))) # Testing except: img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpeg']))) # img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpeg']))) # Testing for d in bboxes_whole_leaves: # img_crop = img.crop((d[1], d[2], d[3], d[4])) # PIL img_crop = img[d[2]:d[4], d[1]:d[3]] loc = '-'.join([str(d[1]), str(d[2]), str(d[3]), str(d[4])]) # value[dict_name_cropped].append({crop_name: img_crop}) if do_upscale: upscale_factor = int(cfg['leafmachine']['landmark_detector_armature']['upscale_factor']) if cls == 0: crop_name = '__'.join([filename,f"PRICKLE-{upscale_factor}x",loc]) height, width, _ = img_crop.shape img_crop = cv2.resize(img_crop, ((width * upscale_factor), (height * upscale_factor)), interpolation=cv2.INTER_LANCZOS4) else: if cls == 0: crop_name = '__'.join([filename,'PRICKLE',loc]) cv2.imwrite(os.path.join(dir_temp, '.'.join([crop_name,'jpg'])), img_crop) # cv2.imshow('img_crop', img_crop) # cv2.waitKey(0) # img_crop.show() # PIL return dict_big, dir_temp def crop_images_to_bbox(dict_big, cls, dict_name_cropped, dict_from, Project, Dirs): dir_temp = os.path.join(Dirs.landmarks, 'TEMP_landmarks') os.makedirs(dir_temp, exist_ok=True) # For each image, iterate through the whole leaves, segment, report data back to dict_plant_components for filename, value in dict_big.items(): value[dict_name_cropped] = [] if dict_from in value: bboxes_whole_leaves = [val for val in value[dict_from] if val[0] == convert_index_to_class(cls)] if len(bboxes_whole_leaves) == 0: m = str(''.join(['No objects for class ', convert_index_to_class(0), ' were found'])) # Print_Verbose(cfg, 3, m).plain() else: try: img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpg']))) # img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpg']))) # Testing except: img = cv2.imread(os.path.join(Project.dir_images, '.'.join([filename,'jpeg']))) # img = cv2.imread(os.path.join(Project, '.'.join([filename,'jpeg']))) # Testing for d in bboxes_whole_leaves: # img_crop = img.crop((d[1], d[2], d[3], d[4])) # PIL img_crop = img[d[2]:d[4], d[1]:d[3]] loc = '-'.join([str(d[1]), str(d[2]), str(d[3]), str(d[4])]) if cls == 0: crop_name = '__'.join([filename,'L',loc]) elif cls == 1: crop_name = '__'.join([filename,'PL',loc]) elif cls == 2: crop_name = '__'.join([filename,'ARM',loc]) # value[dict_name_cropped].append({crop_name: img_crop}) cv2.imwrite(os.path.join(dir_temp, '.'.join([crop_name,'jpg'])), img_crop) # cv2.imshow('img_crop', img_crop) # cv2.waitKey(0) # img_crop.show() # PIL return dict_big, dir_temp def convert_index_to_class(ind): mapping = { 0: 'apex_angle', 1: 'base_angle', 2: 'lamina_base', 3: 'lamina_tip', 4: 'lamina_width', 5: 'lobe_tip', 6: 'midvein_trace', 7: 'petiole_tip', 8: 'petiole_trace', } return mapping.get(ind, 'Invalid class').lower() def convert_index_to_class_armature(ind): mapping = { 0: 'tip', 1: 'middle', 2: 'outer', } return mapping.get(ind, 'Invalid class').lower()