import json, torch, transformers, gc from transformers import BitsAndBytesConfig from langchain.output_parsers import RetryWithErrorOutputParser from langchain.prompts import PromptTemplate from langchain_core.output_parsers import JsonOutputParser from huggingface_hub import hf_hub_download from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template ''' Local Pipielines: https://python.langchain.com/docs/integrations/llms/huggingface_pipelines ''' class LocalMistralHandler: RETRY_DELAY = 2 # Wait 2 seconds before retrying MAX_RETRIES = 5 # Maximum number of retries STARTING_TEMP = 0.1 TOKENIZER_NAME = None VENDOR = 'mistral' MAX_GPU_MONITORING_INTERVAL = 2 # seconds def __init__(self, cfg, logger, model_name, JSON_dict_structure): self.cfg = cfg self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO'] self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO'] self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia'] self.logger = logger self.has_GPU = torch.cuda.is_available() self.monitor = SystemLoadMonitor(logger) self.model_name = model_name self.model_id = f"mistralai/{self.model_name}" name_parts = self.model_name.split('-') self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json") self.JSON_dict_structure = JSON_dict_structure self.starting_temp = float(self.STARTING_TEMP) self.temp_increment = float(0.2) self.adjust_temp = self.starting_temp system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user." template = """ [INST]{}[/INST] [INST]{}[/INST] """.format(system_prompt, "{query}") # Create a prompt from the template so we can use it with Langchain self.prompt = PromptTemplate(template=template, input_variables=["query"]) # Set up a parser self.parser = JsonOutputParser() self._set_config() # def _clear_VRAM(self): # # Clear CUDA cache if it's being used # if self.has_GPU: # self.local_model = None # self.local_model_pipeline = None # del self.local_model # del self.local_model_pipeline # gc.collect() # Explicitly invoke garbage collector # torch.cuda.empty_cache() # else: # self.local_model_pipeline = None # self.local_model = None # del self.local_model_pipeline # del self.local_model # gc.collect() # Explicitly invoke garbage collector def _set_config(self): # self._clear_VRAM() self.config = {'max_new_tokens': 1024, 'temperature': self.starting_temp, 'seed': 2023, 'top_p': 1, 'top_k': 40, 'do_sample': True, 'n_ctx':4096, # Activate 4-bit precision base model loading 'use_4bit': True, # Compute dtype for 4-bit base models 'bnb_4bit_compute_dtype': "float16", # Quantization type (fp4 or nf4) 'bnb_4bit_quant_type': "nf4", # Activate nested quantization for 4-bit base models (double quantization) 'use_nested_quant': False, } compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') ) self.bnb_config = BitsAndBytesConfig( load_in_4bit=self.config.get('use_4bit'), bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'), bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=self.config.get('use_nested_quant'), ) # Check GPU compatibility with bfloat16 if compute_dtype == torch.float16 and self.config.get('use_4bit'): major, _ = torch.cuda.get_device_capability() if major >= 8: # print("=" * 80) # print("Your GPU supports bfloat16: accelerate training with bf16=True") # print("=" * 80) self.b_float_opt = torch.bfloat16 else: self.b_float_opt = torch.float16 self._build_model_chain_parser() def _adjust_config(self): new_temp = self.adjust_temp + self.temp_increment self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}') self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}') self.adjust_temp += self.temp_increment def _reset_config(self): self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') self.adjust_temp = self.starting_temp def _build_model_chain_parser(self): self.local_model_pipeline = transformers.pipeline("text-generation", model=self.model_id, max_new_tokens=self.config.get('max_new_tokens'), top_k=self.config.get('top_k'), top_p=self.config.get('top_p'), do_sample=self.config.get('do_sample'), model_kwargs={"torch_dtype": self.b_float_opt, "load_in_4bit": True, "quantization_config": self.bnb_config}) self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline) # Set up the retry parser with the runnable self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES) # Create an llm chain with LLM and prompt self.chain = self.prompt | self.local_model # LCEL def call_llm_local_MistralAI(self, prompt_template, json_report, paths): _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths self.json_report = json_report self.json_report.set_text(text_main=f'Sending request to {self.model_name}') self.monitor.start_monitoring_usage() nt_in = 0 nt_out = 0 ind = 0 while ind < self.MAX_RETRIES: ind += 1 try: # Dynamically set the temperature for this specific request model_kwargs = {"temperature": self.adjust_temp} # Invoke the chain to generate prompt text results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs}) # Use retry_parser to parse the response with retry logic output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template) if output is None: self.logger.error(f'Failed to extract JSON from:\n{results}') self._adjust_config() del results else: nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME) nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME) output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure) if output is None: self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}') self._adjust_config() else: self.monitor.stop_inference_timer() # Starts tool timer too json_report.set_text(text_main=f'Working on WFO, Geolocation, Links') output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki) save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt) self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}") usage_report = self.monitor.stop_monitoring_report_usage() if self.adjust_temp != self.starting_temp: self._reset_config() json_report.set_text(text_main=f'LLM call successful') del results return output, nt_in, nt_out, WFO_record, GEO_record, usage_report except Exception as e: self.logger.error(f'{e}') self._adjust_config() self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts") self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts') self.monitor.stop_inference_timer() # Starts tool timer too usage_report = self.monitor.stop_monitoring_report_usage() json_report.set_text(text_main=f'LLM call failed') self._reset_config() return None, nt_in, nt_out, None, None, usage_report