import gradio as gr import google.generativeai as genai import base64 import io from PIL import Image import fitz # PyMuPDF import os # Configure Gemini API genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = genai.GenerativeModel('gemini-1.5-flash') # Prompt for Gemini prompt = """ You are analyzing a medical document or an application form from patient. Extract the following fields as JSON: - Position applied for - Office/Ministry - Duty station - First name(s) - Surname - Date of birth - Gender - Citizenship - Postal Address - Residential Address - Email - Phone number (mobile) """ def process_pdf(pdf_bytes: bytes): doc = fitz.open(stream=pdf_bytes, filetype="pdf") results = [] for page_num in range(len(doc)): page = doc.load_page(page_num) pix = page.get_pixmap(dpi=200) # Convert to PIL image image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # Convert to JPEG bytes buffered = io.BytesIO() image.save(buffered, format="JPEG") jpeg_bytes = buffered.getvalue() # Send to Gemini response = model.generate_content([ prompt, { "mime_type": "image/jpeg", "data": jpeg_bytes } ]) results.append(response.text.strip()) return "\n\n---\n\n".join(results) # Gradio interface demo = gr.Interface( fn=process_pdf, inputs=gr.File(type="binary", label="Upload PDF Form"), outputs="textbox", title="Healthelic Form Data Extractor (PDF Scanner) - Gemini 1.5 Flash", description="Upload a scanned medical form in PDF format to extract key fields using Gemini 1.5 Flash." ) if __name__ == "__main__": demo.launch()