Spaces:
Sleeping
Sleeping
adding reties for space to wake up any downstream space
Browse files
app.py
CHANGED
@@ -41,7 +41,91 @@ lock = threading.Lock()
|
|
41 |
# Create an OrderedDict to store clients, limited to 15 entries
|
42 |
client_cache = OrderedDict()
|
43 |
MAX_CACHE_SIZE = 15
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def get_client_for_ip(ip_address,x_ip_token):
|
46 |
"""
|
47 |
Retrieve or create a client for the given IP address.
|
@@ -118,43 +202,7 @@ def set_client_for_session(request: gr.Request):
|
|
118 |
# The "gradio/text-to-image" space is a ZeroGPU space
|
119 |
|
120 |
|
121 |
-
def my_inference_function(client,input_data, output_data,mode, max_length, max_new_tokens, model_size):
|
122 |
-
"""
|
123 |
-
The main inference function to process input data and return results.
|
124 |
-
|
125 |
-
Args:
|
126 |
-
input_data (str or dict): The input data in JSON format.
|
127 |
-
mode (str): The mode of operation ("scoring" or "generative").
|
128 |
-
max_length (int): The maximum length of the input prompt.
|
129 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
130 |
-
model_size (str): The size of the model to be used.
|
131 |
-
|
132 |
-
Returns:
|
133 |
-
str: The output data in JSON format.
|
134 |
-
"""
|
135 |
-
with lock:
|
136 |
-
try:
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
result = client.predict(
|
141 |
-
input_data=input_data,
|
142 |
-
output_data=output_data,
|
143 |
-
mode=mode,
|
144 |
-
max_length=max_length,
|
145 |
-
max_new_tokens=max_new_tokens,
|
146 |
-
model_size=model_size,
|
147 |
-
api_name="/my_inference_function"
|
148 |
-
)
|
149 |
-
print(result)
|
150 |
-
print("entering return",result)
|
151 |
-
return result # Pretty-print the JSON
|
152 |
-
except json.JSONDecodeError:
|
153 |
-
return json.dumps({"error": "Invalid JSON input"})
|
154 |
-
except KeyError:
|
155 |
-
return json.dumps({"error": "Missing 'input' key in JSON"})
|
156 |
-
except ValueError as e:
|
157 |
-
return json.dumps({"error": str(e)})
|
158 |
|
159 |
with gr.Blocks() as demo:
|
160 |
"""
|
@@ -166,7 +214,7 @@ with gr.Blocks() as demo:
|
|
166 |
- Other UI components (not shown in this snippet).
|
167 |
- A load event that calls set_client_for_session when the interface is loaded.
|
168 |
"""
|
169 |
-
|
170 |
gr.Markdown("## LLM Safety Evaluation")
|
171 |
client = gr.State()
|
172 |
with gr.Tab("ShieldGemma2"):
|
|
|
41 |
# Create an OrderedDict to store clients, limited to 15 entries
|
42 |
client_cache = OrderedDict()
|
43 |
MAX_CACHE_SIZE = 15
|
44 |
+
|
45 |
+
|
46 |
+
def my_inference_function(client,input_data, output_data,mode, max_length, max_new_tokens, model_size):
|
47 |
+
"""
|
48 |
+
The main inference function to process input data and return results.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
input_data (str or dict): The input data in JSON format.
|
52 |
+
mode (str): The mode of operation ("scoring" or "generative").
|
53 |
+
max_length (int): The maximum length of the input prompt.
|
54 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
55 |
+
model_size (str): The size of the model to be used.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
str: The output data in JSON format.
|
59 |
+
"""
|
60 |
+
with lock:
|
61 |
+
try:
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
result = client[0].predict(
|
66 |
+
input_data=input_data,
|
67 |
+
output_data=output_data,
|
68 |
+
mode=mode,
|
69 |
+
max_length=max_length,
|
70 |
+
max_new_tokens=max_new_tokens,
|
71 |
+
model_size=model_size,
|
72 |
+
api_name="/my_inference_function"
|
73 |
+
)
|
74 |
+
print(result)
|
75 |
+
print("entering return",result)
|
76 |
+
return result # Pretty-print the JSON
|
77 |
+
except json.JSONDecodeError:
|
78 |
+
return json.dumps({"error": "Invalid JSON input"})
|
79 |
+
except KeyError:
|
80 |
+
return json.dumps({"error": "Missing 'input' key in JSON"})
|
81 |
+
except ValueError as e:
|
82 |
+
return json.dumps({"error": str(e)})
|
83 |
+
|
84 |
+
|
85 |
+
def wake_up_space_with_retries(space_url, token, retries=5, wait_time=10):
|
86 |
+
"""
|
87 |
+
Attempt to wake up the Hugging Face Space with retries.
|
88 |
+
Retries a number of times in case of a delay due to the Space waking up.
|
89 |
+
|
90 |
+
:param space_url: The URL of the Hugging Face Space.
|
91 |
+
:param token: The Hugging Face API token.
|
92 |
+
:param retries: Number of retries if the Space is sleeping.
|
93 |
+
:param wait_time: Time to wait between retries (in seconds).
|
94 |
+
"""
|
95 |
+
for attempt in range(retries):
|
96 |
+
try:
|
97 |
+
print(f"Attempt {attempt + 1} to wake up the Space...")
|
98 |
+
|
99 |
+
# Initialize the Gradio Client
|
100 |
+
client = Client(space_url, hf_token=token, timeout=httpx.Timeout(30.0)) # 30-second timeout
|
101 |
+
|
102 |
+
|
103 |
+
my_inference_function(client,"test input","",scoring,10,10,"2B")
|
104 |
+
|
105 |
+
# Make a prediction or call to wake the Space
|
106 |
+
#result = client.predict("<your_input>") # Replace with actual inputs
|
107 |
+
print("Space is awake and ready!")
|
108 |
+
return client
|
109 |
+
|
110 |
+
except httpx.ReadTimeout:
|
111 |
+
print(f"Request timed out on attempt {attempt + 1}. Retrying in {wait_time} seconds...")
|
112 |
+
time.sleep(wait_time)
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(f"An error occurred on attempt {attempt + 1}: {e}")
|
116 |
+
|
117 |
+
# Wait before retrying
|
118 |
+
if attempt < retries - 1:
|
119 |
+
print(f"Waiting for {wait_time} seconds before retrying...")
|
120 |
+
|
121 |
+
print("Space is still not active after multiple attempts.")
|
122 |
+
return None
|
123 |
+
|
124 |
+
|
125 |
+
#default_client=Client("pi19404/ai-worker", hf_token=API_TOKEN)
|
126 |
+
|
127 |
+
default_client=wake_up_space_with_retries("pi19404/ai-worker",API_TOKEN)
|
128 |
+
|
129 |
def get_client_for_ip(ip_address,x_ip_token):
|
130 |
"""
|
131 |
Retrieve or create a client for the given IP address.
|
|
|
202 |
# The "gradio/text-to-image" space is a ZeroGPU space
|
203 |
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
with gr.Blocks() as demo:
|
208 |
"""
|
|
|
214 |
- Other UI components (not shown in this snippet).
|
215 |
- A load event that calls set_client_for_session when the interface is loaded.
|
216 |
"""
|
217 |
+
|
218 |
gr.Markdown("## LLM Safety Evaluation")
|
219 |
client = gr.State()
|
220 |
with gr.Tab("ShieldGemma2"):
|