File size: 7,375 Bytes
3825412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb31b6
 
 
 
3825412
 
6ad3f54
3825412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc107af
3825412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ecef1
3825412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
addf0e4
3825412
 
 
 
 
 
 
 
 
 
a12c70b
 
3825412
 
 
 
2e77b98
3825412
 
 
 
 
119e0d0
3825412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119e0d0
3825412
 
 
 
 
 
 
 
 
 
bbc7ba0
 
3825412
 
 
 
 
 
 
 
ecc3776
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import os
from PIL import Image
from pymongo import MongoClient
import requests
from io import BytesIO
from dotenv import load_dotenv

instruction_beginning = """
## πŸ” Evaluation of AI Quality

\n**Background**

\nIn this task, you will evaluate the quality of image edits based on a textual instruction and two input images regarding three aspects: **Instruction-Edit Alignment**, **Visual Quality** and **Consistency**.
Each aspect should be rated on a scale from 1 to 10, where 1 indicates 'very poor' and 10 represents 'excellent'.

Please ensure you have read the detailed instructions provided in this [document](https://www.canva.com/design/DAGP0UTTygI/rYkYZtLUipuKbXPbRcj9kQ/edit?utm_content=DAGP0UTTygI&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton) before starting the labeling process.

\n**Dataset Source**

This project uses the [MagicBrush dataset](https://osu-nlp-group.github.io/MagicBrush/) (dev split), released under the CC-BY-4.0 license.

\n**Labeling**

\nPlease enter a nickname to avoid repeating image pairs. Make sure to remember this nickname for future sessions. If you choose not to enter a nickname, your ratings will not be saved.
"""

alignment_info = """
How well does the edited area align with the text instruction? (e.g. numbers, colors, and objects)
"""

quality_info = """
How realistic and aesthetically pleasing is the edited area? (e.g. color realism and overall aesthetics)
"""

consistency_info = """
How seamlessly does the edit integrate with the rest of the original image? (e.g. consistency in style, lighting, logic, and spatial coherence)
"""

overall_info = """
How do you perceive and like the edit as a whole, how well does it meet your expectations and complements the original image?
"""

# load_dotenv()

mongo_user = os.getenv('MONGO_USER')
mongo_password = os.getenv('MONGO_PASSWORD')
cluster_url = os.getenv('MONGO_CLUSTER_URL')
gradio_user = os.getenv('GRADIO_USER')
gradio_password = os.getenv('GRADIO_PASSWORD')

connection_url = f"mongodb+srv://{mongo_user}:{mongo_password}@{cluster_url}"
client = MongoClient(connection_url)
db = client["thesis"]
collection = db["labeling"]


def download_image(url):
    """Download image from a given URL."""
    response = requests.get(url)
    response.raise_for_status()
    return Image.open(BytesIO(response.content))


def fetch_random_entry(annotator):
    """Fetch a random entry from the database that hasn't been rated by the specified annotator."""
    pipeline = [
        {
            "$match": {
                "ratings.rater": {"$ne": annotator}  # exclude entries where rater is the specified annotator
            }
        },
        {"$sample": {"size": 1}}  # randomly select one entry
    ]

    results = list(collection.aggregate(pipeline))
    return results[0] if results else None


def save_rating(entry_id, turn, annotator, alignment, quality, consistency, overall):
    """Save the given ratings into the database."""
    if annotator and entry_id != '' and turn != '':
        rating = {
            "rater": annotator,
            "alignment": alignment,
            "quality": quality,
            "consistency": consistency,
            "overall": overall
        }

        collection.update_one(
            {"meta_information.id": int(entry_id), "meta_information.turn": int(turn)},
            {"$push": {"ratings": rating}}
        )


def count_labeled_images(annotator):
    """Count how many images a person has labeled based on the 'ratings' field."""
    pipeline = [
        {
            "$match": {
                "ratings.rater": annotator  # where 'rater' is the given annotator
            }
        },
        {
            "$count": "labeled_images"  # count the number of documents that match
        }
    ]

    result = list(collection.aggregate(pipeline))

    return result[0]['labeled_images'] if result else 0


def prepare_next_image(annotator):
    """Fetch the next image and its metadata."""
    entry = fetch_random_entry(annotator)

    if not entry:
        return None, None, None, None, "No more images to rate!", None

    meta_info = entry["meta_information"]
    input_image = download_image(meta_info["input_img_link"])
    output_image = download_image(meta_info["output_img_link"])
    instruction = meta_info["instruction"]
    progress_message = f"**Rate this image edit! ({count_labeled_images(annotator)}/528 labeled)**"

    return meta_info["id"], input_image, output_image, instruction, progress_message, meta_info["turn"]


def start(annotator):
    return prepare_next_image(annotator)


def record_input(id, turn, annotator, alignment, quality, consistency, overall):
    save_rating(id, turn, annotator, alignment, quality, consistency, overall)
    img_id, img_block1, img_block2, prompt, progress_text, turn = prepare_next_image(annotator)
    return img_id, img_block1, img_block2, prompt, progress_text, turn, 5, 5, 5, 5


# Gradio Interface
def create_interface():
    with gr.Blocks(theme=gr.themes.Origin()) as demo:
        gr.Markdown(instruction_beginning)

        # annotator = gr.Textbox(label="Nickname", interactive=True)
        annotator = gr.Textbox(label="Annotator Nickname")

        start_btn = gr.Button("Start", variant="primary")
        progress_text = gr.Markdown("Waiting to start.")
        # progress_text = gr.Markdown("You have labeled **0** out of 528 potential images.")

        with gr.Row():
            img_block1 = gr.Image(visible=True, width=300, height=300, label="Original Image", interactive=False)
            img_block2 = gr.Image(visible=True, width=300, height=300, label="Edited Image", interactive=False)

        prompt = gr.Textbox(label="Instruction", visible=True, interactive=False)
        img_id = gr.Textbox(visible=False)
        turn = gr.Textbox(visible=False)

        with gr.Row():
            slider_alignment = gr.Slider(label="Instruction-Edit Alignment", minimum=0, maximum=10, step=1, value=5,
                                         info=alignment_info)
            slider_quality = gr.Slider(label="Visual Quality", minimum=0, maximum=10, step=1, value=5,
                                       info=quality_info)
            slider_consistency = gr.Slider(label="Consistency", minimum=0, maximum=10, step=1, value=5,
                                           info=consistency_info)

        slider_overall = gr.Slider(label="Overall Impression", minimum=0, maximum=10, step=1, value=5,
                                   info=overall_info)

        save_and_continue_btn = gr.Button("Save & Continue", variant="primary")

        start_btn.click(
            fn=start,
            inputs=[annotator],
            outputs=[img_id, img_block1, img_block2, prompt, progress_text, turn]
        )

        save_and_continue_btn.click(
            fn=record_input,
            inputs=[img_id, turn, annotator, slider_alignment, slider_quality, slider_consistency, slider_overall],
            outputs=[img_id, img_block1, img_block2, prompt, progress_text, turn, 
                     slider_alignment, slider_quality, slider_consistency, slider_overall]
        )

    return demo


if __name__ == "__main__":
    demo = create_interface()
    demo.queue()
    #demo.launch(share=True, debug=True, auth=(gradio_user, gradio_password))
    demo.launch(share=True, debug=True)