|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Blimp Metric.""" |
|
|
|
from collections import defaultdict |
|
from typing import Optional |
|
|
|
import datasets |
|
import evaluate |
|
import torch |
|
from evaluate import logging |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
datasets.logging.set_verbosity_error() |
|
|
|
BLIMP_UIDS = [ |
|
"adjunct_island", |
|
"anaphor_gender_agreement", |
|
"anaphor_number_agreement", |
|
"animate_subject_passive", |
|
"animate_subject_trans", |
|
"causative", |
|
"complex_NP_island", |
|
"coordinate_structure_constraint_complex_left_branch", |
|
"coordinate_structure_constraint_object_extraction", |
|
"determiner_noun_agreement_1", |
|
"determiner_noun_agreement_2", |
|
"determiner_noun_agreement_irregular_1", |
|
"determiner_noun_agreement_irregular_2", |
|
"determiner_noun_agreement_with_adj_2", |
|
"determiner_noun_agreement_with_adj_irregular_1", |
|
"determiner_noun_agreement_with_adj_irregular_2", |
|
"determiner_noun_agreement_with_adjective_1", |
|
"distractor_agreement_relational_noun", |
|
"distractor_agreement_relative_clause", |
|
"drop_argument", |
|
"ellipsis_n_bar_1", |
|
"ellipsis_n_bar_2", |
|
"existential_there_object_raising", |
|
"existential_there_quantifiers_1", |
|
"existential_there_quantifiers_2", |
|
"existential_there_subject_raising", |
|
"expletive_it_object_raising", |
|
"inchoative", |
|
"intransitive", |
|
"irregular_past_participle_adjectives", |
|
"irregular_past_participle_verbs", |
|
"irregular_plural_subject_verb_agreement_1", |
|
"irregular_plural_subject_verb_agreement_2", |
|
"left_branch_island_echo_question", |
|
"left_branch_island_simple_question", |
|
"matrix_question_npi_licensor_present", |
|
"npi_present_1", |
|
"npi_present_2", |
|
"only_npi_licensor_present", |
|
"only_npi_scope", |
|
"passive_1", |
|
"passive_2", |
|
"principle_A_c_command", |
|
"principle_A_case_1", |
|
"principle_A_case_2", |
|
"principle_A_domain_1", |
|
"principle_A_domain_2", |
|
"principle_A_domain_3", |
|
"principle_A_reconstruction", |
|
"regular_plural_subject_verb_agreement_1", |
|
"regular_plural_subject_verb_agreement_2", |
|
"sentential_negation_npi_licensor_present", |
|
"sentential_negation_npi_scope", |
|
"sentential_subject_island", |
|
"superlative_quantifiers_1", |
|
"superlative_quantifiers_2", |
|
"tough_vs_raising_1", |
|
"tough_vs_raising_2", |
|
"transitive", |
|
"wh_island", |
|
"wh_questions_object_gap", |
|
"wh_questions_subject_gap", |
|
"wh_questions_subject_gap_long_distance", |
|
"wh_vs_that_no_gap", |
|
"wh_vs_that_no_gap_long_distance", |
|
"wh_vs_that_with_gap", |
|
"wh_vs_that_with_gap_long_distance", |
|
] |
|
|
|
_CITATION = r""" |
|
@article{warstadt2020blimp, |
|
author = {Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei and Wang, Sheng-Fu and Bowman, Samuel R.}, |
|
title = {BLiMP: The Benchmark of Linguistic Minimal Pairs for English}, |
|
journal = {Transactions of the Association for Computational Linguistics}, |
|
volume = {8}, |
|
number = {}, |
|
pages = {377-392}, |
|
year = {2020}, |
|
doi = {10.1162/tacl\_a\_00321}, |
|
URL = {https://doi.org/10.1162/tacl_a_00321}, |
|
eprint = {https://doi.org/10.1162/tacl_a_00321}, |
|
abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. } |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """BLiMP is a challenge set for evaluating what language models (LMs) know about major grammatical phenomena in English. |
|
BLiMP consists of 67 sub-datasets, each containing 1000 minimal pairs isolating specific contrasts in syntax, morphology, or semantics. |
|
The data is automatically generated according to expert-crafted grammars. Aggregate human agreement with the labels is 96.4%. |
|
We use BLiMP to evaluate an n-gram LM, LSTM LM, GPT-2, and Transformer-XL. |
|
|
|
For more info see https://github.com/alexwarstadt/blimp. |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Args: |
|
model_id (str): model used for calculating Blimp, NOTE: should be a causal LM model |
|
predictions (list[str]): names of metrics to run. pass empty list or ["*"] to run all of them |
|
batch_size (int): the batch size to run texts through the model. Defaults to 16. |
|
device (str): device to run on, defaults to 'cuda' when available. |
|
samples_per_set (Optional[int]): the number of samples per phenomenon. Max is 1,000 (but will not error if higher value given.) If None, defaults to 1000. |
|
trust_remote_code (bool): whether to trust datasets code , default False. |
|
|
|
Returns: |
|
blimp: dictionary containing the blimp scores for each of the 67 sub-datasets, as well as the overall accuracy. |
|
An LM’s overall accuracy on BLiMP is simply the proportion of the 67,000 minimal pairs in which the model assigns a higher probability to the acceptable sentence. |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class Blimp(evaluate.Metric): |
|
def _info(self): |
|
return evaluate.MetricInfo( |
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"predictions": datasets.Value("string"), |
|
} |
|
), |
|
reference_urls=[ |
|
"https://github.com/alexwarstadt/blimp", |
|
"https://huggingface.co/datasets/nyu-mll/blimp", |
|
], |
|
) |
|
|
|
def _compute( |
|
self, |
|
model_id, |
|
predictions=None, |
|
batch_size: int = 16, |
|
device=None, |
|
samples_per_set: Optional[int] = None, |
|
trust_remote_code: bool = False, |
|
): |
|
if device is not None: |
|
assert device in ["gpu", "cpu", "cuda", "mps"], ( |
|
"device should be either gpu, cpu or mps." |
|
) |
|
if device == "gpu": |
|
device = "cuda" |
|
else: |
|
device = ( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else ("mps" if torch.mps.is_available() else "cpu") |
|
) |
|
|
|
samples_per_set = 1000 if samples_per_set is None else samples_per_set |
|
if samples_per_set <= 0 or samples_per_set > 1000: |
|
samples_per_set = 1000 |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=trust_remote_code |
|
) |
|
model = model.to(device) |
|
model.eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=trust_remote_code, |
|
max_model_length=150, |
|
) |
|
|
|
|
|
|
|
|
|
if tokenizer.pad_token is None and batch_size > 1: |
|
existing_special_tokens = list( |
|
tokenizer.special_tokens_map_extended.values() |
|
) |
|
|
|
assert len(existing_special_tokens) > 0, ( |
|
"If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." |
|
) |
|
|
|
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]}) |
|
|
|
run_all = len(predictions) == 0 or predictions[0] == "*" |
|
|
|
if run_all: |
|
blimp_sets = BLIMP_UIDS |
|
else: |
|
blimp_sets = [] |
|
for p in predictions: |
|
if p in BLIMP_UIDS: |
|
blimp_sets.append(p) |
|
else: |
|
logging.logging.warning(f"{p} not a valid UID, skipping...") |
|
|
|
assert len(blimp_sets) > 0, "no valid phenomena selected" |
|
|
|
results = {} |
|
phenom_results = defaultdict(list) |
|
|
|
for category in logging.tqdm(blimp_sets, desc="Evaluating phenomena..."): |
|
dataset = datasets.load_dataset( |
|
"nyu-mll/blimp", category, trust_remote_code=trust_remote_code |
|
)["train"] |
|
|
|
|
|
|
|
sents = [(x["sentence_good"], x["sentence_bad"]) for x in dataset] |
|
good_sents, bad_sents = zip(*sents[:samples_per_set]) |
|
|
|
|
|
good_probs = _get_batch_probabilities( |
|
model, |
|
tokenizer, |
|
good_sents, |
|
device, |
|
batch_size, |
|
category, |
|
sent_type="good", |
|
) |
|
bad_probs = _get_batch_probabilities( |
|
model, |
|
tokenizer, |
|
bad_sents, |
|
device, |
|
batch_size, |
|
category, |
|
sent_type="bad", |
|
) |
|
|
|
|
|
sub_acc = (good_probs > bad_probs).float().mean().item() |
|
|
|
phenom = dataset[0]["linguistics_term"] |
|
|
|
results[category] = sub_acc |
|
phenom_results[phenom].append(sub_acc) |
|
|
|
return { |
|
"by_uid": results, |
|
"accuracy": sum(results.values()) / len(results), |
|
"by_phenomenon": { |
|
term: sum(acc) / len(acc) for term, acc in phenom_results.items() |
|
}, |
|
} |
|
|
|
|
|
def _get_batch_probabilities( |
|
model, |
|
tokenizer, |
|
sentences: list[str], |
|
device: str, |
|
batch_size: int, |
|
phenomenon: str, |
|
sent_type: str = "good", |
|
): |
|
"""Compute log probabilities for a batch of sentences""" |
|
probs = torch.zeros(len(sentences)) |
|
|
|
for i in logging.tqdm( |
|
range(0, len(sentences), batch_size), |
|
desc=f"{phenomenon} - {sent_type} sentences...", |
|
leave=False, |
|
): |
|
batch = sentences[i : i + batch_size] |
|
inputs = tokenizer( |
|
batch, padding=batch_size > 1, return_tensors="pt", truncation=True |
|
).to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
logits = outputs.logits[..., :-1, :].contiguous() |
|
labels = inputs.input_ids[..., 1:].contiguous() |
|
|
|
|
|
log_probs = torch.nn.functional.log_softmax(logits, dim=-1) |
|
|
|
|
|
token_log_probs = torch.gather(log_probs, 2, labels.unsqueeze(-1)).squeeze(-1) |
|
|
|
if batch_size > 1: |
|
|
|
token_log_probs.masked_fill_(labels == tokenizer.pad_token_id, 0.0) |
|
|
|
|
|
sequence_log_probs = token_log_probs.sum(dim=1) |
|
|
|
probs[i : i + batch_size] = sequence_log_probs |
|
|
|
return probs |
|
|