yu-val-weiss commited on
Commit
2338f58
·
1 Parent(s): c54bac9

make static

Browse files
Files changed (2) hide show
  1. README.md +10 -4
  2. app.py +0 -5
README.md CHANGED
@@ -3,9 +3,7 @@ title: BLiMP
3
  emoji: 🎈
4
  colorFrom: blue
5
  colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.20.1
8
- app_file: app.py
9
  pinned: false
10
  tags:
11
  - evaluate
@@ -24,11 +22,13 @@ description: >-
24
  # Metric Card for BLiMP
25
 
26
  ## Metric Description
 
27
  BLiMP is a challenge set for evaluating what language models (LMs) know about major grammatical phenomena in English. BLiMP consists of 67 sub-datasets,
28
  each containing 1000 minimal pairs isolating specific contrasts in syntax, morphology, or semantics.
29
  The data is automatically generated according to expert-crafted grammars.
30
 
31
  ## Intended Uses
 
32
  Any language generation task.
33
 
34
  ## How to Use
@@ -42,11 +42,13 @@ results = blimp.compute(model_id='pico-lm/pico-decoder')
42
  ```
43
 
44
  ### Inputs
 
45
  - **model_id** (str): model used for calculating BLiMP.
46
  - **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
47
  - **device** (str): device to run on, defaults to `cuda` when available
48
 
49
  ### Output Values
 
50
  This metric outputs a dictionary with the BLiMP scores for each subdataset.
51
  If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation.
52
 
@@ -57,7 +59,9 @@ If one of the input texts is longer than the max input length of the model, then
57
  The range of this metric is [0, inf). A lower score is better.
58
 
59
  ### Examples
 
60
  Calculating perplexity on predictions defined here:
 
61
  ```python
62
  perplexity = evaluate.load("perplexity", module_type="metric")
63
  input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
@@ -71,7 +75,9 @@ print(round(results["mean_perplexity"], 2))
71
  print(round(results["perplexities"][0], 2))
72
  >>>32.25
73
  ```
 
74
  Calculating perplexity on predictions loaded in from a dataset:
 
75
  ```python
76
  perplexity = evaluate.load("perplexity", module_type="metric")
77
  input_texts = datasets.load_dataset("wikitext",
@@ -105,4 +111,4 @@ print(round(results["perplexities"][0], 2))
105
  abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. }
106
  }
107
 
108
- ```
 
3
  emoji: 🎈
4
  colorFrom: blue
5
  colorTo: red
6
+ sdk: static
 
 
7
  pinned: false
8
  tags:
9
  - evaluate
 
22
  # Metric Card for BLiMP
23
 
24
  ## Metric Description
25
+
26
  BLiMP is a challenge set for evaluating what language models (LMs) know about major grammatical phenomena in English. BLiMP consists of 67 sub-datasets,
27
  each containing 1000 minimal pairs isolating specific contrasts in syntax, morphology, or semantics.
28
  The data is automatically generated according to expert-crafted grammars.
29
 
30
  ## Intended Uses
31
+
32
  Any language generation task.
33
 
34
  ## How to Use
 
42
  ```
43
 
44
  ### Inputs
45
+
46
  - **model_id** (str): model used for calculating BLiMP.
47
  - **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
48
  - **device** (str): device to run on, defaults to `cuda` when available
49
 
50
  ### Output Values
51
+
52
  This metric outputs a dictionary with the BLiMP scores for each subdataset.
53
  If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation.
54
 
 
59
  The range of this metric is [0, inf). A lower score is better.
60
 
61
  ### Examples
62
+
63
  Calculating perplexity on predictions defined here:
64
+
65
  ```python
66
  perplexity = evaluate.load("perplexity", module_type="metric")
67
  input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
 
75
  print(round(results["perplexities"][0], 2))
76
  >>>32.25
77
  ```
78
+
79
  Calculating perplexity on predictions loaded in from a dataset:
80
+
81
  ```python
82
  perplexity = evaluate.load("perplexity", module_type="metric")
83
  input_texts = datasets.load_dataset("wikitext",
 
111
  abstract = { We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4\%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands. }
112
  }
113
 
114
+ ```
app.py DELETED
@@ -1,5 +0,0 @@
1
- import evaluate
2
- from evaluate.utils import launch_gradio_widget
3
-
4
- module = evaluate.load("./blimp.py", module_type="metric")
5
- launch_gradio_widget(module)