Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from dataclasses import dataclass | |
from prettytable import PrettyTable | |
from pytorch_ie import AnnotationList, BinaryRelation, Span, LabeledSpan, Pipeline, TextDocument, annotation_field | |
from pytorch_ie.models import TransformerSpanClassificationModel, TransformerTextClassificationModel | |
from pytorch_ie.taskmodules import TransformerSpanClassificationTaskModule, TransformerRETextClassificationTaskModule | |
from typing import List | |
class ExampleDocument(TextDocument): | |
entities: AnnotationList[LabeledSpan] = annotation_field(target="text") | |
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities") | |
model_name_or_path = "pie/example-ner-spanclf-conll03" | |
ner_taskmodule = TransformerSpanClassificationTaskModule.from_pretrained(model_name_or_path) | |
ner_model = TransformerSpanClassificationModel.from_pretrained(model_name_or_path) | |
ner_pipeline = Pipeline(model=ner_model, taskmodule=ner_taskmodule, device=-1, num_workers=0) | |
model_name_or_path = "pie/example-re-textclf-tacred" | |
re_taskmodule = TransformerRETextClassificationTaskModule.from_pretrained(model_name_or_path) | |
re_model = TransformerTextClassificationModel.from_pretrained(model_name_or_path) | |
re_pipeline = Pipeline(model=re_model, taskmodule=re_taskmodule, device=-1, num_workers=0) | |
def predict(text): | |
document = ExampleDocument(text) | |
ner_pipeline(document, predict_field="entities") | |
for entity in document.entities.predictions: | |
document.entities.append(entity) | |
re_pipeline(document, predict_field="relations") | |
t = PrettyTable() | |
t.field_names = ["head", "tail", "relation"] | |
t.align = "l" | |
for relation in document.relations.predictions: | |
t.add_row([str(relation.head), str(relation.tail), relation.label]) | |
html = t.get_html_string(format=True) | |
html = ( | |
"<div style='max-width:100%; max-height:360px; overflow:auto'>" | |
+ html | |
+ "</div>" | |
) | |
return html | |
iface = gr.Interface( | |
fn=predict, | |
inputs="textbox", | |
outputs="html", | |
) | |
iface.launch() | |