from transformers import pipeline | |
import gradio as gr | |
import torch | |
def detect_gpu(): | |
if not torch.cuda.is_available(): | |
print("No GPU device found") | |
exit() | |
print(f"Found {torch.cuda.device_count()} GPU device(s)") | |
print(f"Using {torch.cuda.get_device_name(0)}") | |
detect_gpu() | |
pipe = pipeline(model="pierrelf/whisper-small-sv", device=0) | |
def transcribe(audio): | |
text = pipe(audio)["text"] | |
return text | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources=['upload', 'microphone'], type="filepath"), | |
outputs="text", | |
title="Whisper Swedish", | |
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.", | |
) | |
iface.launch(server_name="0.0.0.0") |