pierrelf commited on
Commit
46dcc1c
·
1 Parent(s): 35ebb37

Refactor wine function to accept input in a

Browse files
Files changed (1) hide show
  1. app.py +16 -10
app.py CHANGED
@@ -12,10 +12,16 @@ model_dir = model.download()
12
  model = joblib.load(model_dir + "/wine_model.pkl")
13
  print("Model downloaded")
14
 
15
- def wine(alcohol, chlorides, citric_acid, fixed_acidity, ph, residual_sugar, sulphates, total_sulfur_dioxide, type, volatile_acidity):
 
 
 
 
 
 
16
  print("Calling function")
17
- df = pd.DataFrame([[alcohol, chlorides, citric_acid, fixed_acidity, ph, residual_sugar, sulphates, total_sulfur_dioxide, type, volatile_acidity]],
18
- columns=['alcohol', 'chlorides', 'citric_acid', 'fixed_acidity', 'ph', 'residual_sugar', 'sulphates', 'total_sulfur_dioxide', 'type', 'volatile_acidity'])
19
  print("Predicting")
20
  print(df)
21
  # 'res' is a list of predictions returned as the label.
@@ -32,16 +38,16 @@ iface = gr.Interface(
32
  description="Predict the quality of a wine based on its features.",
33
  allow_flagging="never",
34
  inputs=[
35
- gr.Number(label="alcohol"),
 
 
 
36
  gr.Number(label="chlorides"),
37
- gr.Number(label="citric acid"),
38
- gr.Number(label="fixed acidity"),
39
  gr.Number(label="ph"),
40
- gr.Number(label="residual sugar"),
41
  gr.Number(label="sulphates"),
42
- gr.Number(label="total sulfur dioxide"),
43
- gr.Number(label="type"),
44
- gr.Number(label="volatile acidity"),
45
  ],
46
  outputs=gr.Number(label="quality"))
47
 
 
12
  model = joblib.load(model_dir + "/wine_model.pkl")
13
  print("Model downloaded")
14
 
15
+ def wine(fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, total_sulfur_dioxide, ph, sulphates, alcohol, type):
16
+
17
+ if type == "red":
18
+ type = 0
19
+ else:
20
+ type = 1
21
+
22
  print("Calling function")
23
+ df = pd.DataFrame([[fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, total_sulfur_dioxide, ph, sulphates, alcohol, type]], columns=['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'total sulfur dioxide', 'ph', 'sulphates', 'alcohol', 'type'])
24
+
25
  print("Predicting")
26
  print(df)
27
  # 'res' is a list of predictions returned as the label.
 
38
  description="Predict the quality of a wine based on its features.",
39
  allow_flagging="never",
40
  inputs=[
41
+ gr.Number(label="fixed_acidity"),
42
+ gr.Number(label="volatile_acidity"),
43
+ gr.Number(label="citric_acid"),
44
+ gr.Number(label="residual_sugar"),
45
  gr.Number(label="chlorides"),
46
+ gr.Number(label="total_sulfur_dioxide"),
 
47
  gr.Number(label="ph"),
 
48
  gr.Number(label="sulphates"),
49
+ gr.Number(label="alcohol"),
50
+ gr.Radio(["red", "white"], label="type")
 
51
  ],
52
  outputs=gr.Number(label="quality"))
53