Qwen01 / app.py
srcrszhu's picture
Update app.py
2655bbc verified
raw
history blame
882 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-7B-Instruct")
pipe(messages)
# 模型和分词器的名称
model_name = "Qwen/Qwen2.5-7B-Instruct"
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 定义生成文本的函数
def generate_text(input_text):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# 创建 Gradio 接口
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
# 启动 Gradio 接口
iface.launch()