File size: 3,365 Bytes
0106d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import base64
import json
import requests
from typing import Dict, List, Tuple
import streamlit as st

def mock_api_call(pdf_bytes: bytes) -> List:
    """
    Simulates an API call for policy analysis.
    In production, this would make a real API call.
    """
    # Mock response based on the provided sample
    return [{
        "stage": "ANALYSE",
        "response": [
            {
                "factor": "Room rent limit",
                "verdict": "Bad",
                "reason": "There is cap of 100 on room rent"
            },
            {
                "factor": "Deductible",
                "verdict": "Good",
                "reason": "No deductible"
            },
            {
                "factor": "Copay",
                "verdict": "Good",
                "reason": "Copayment (0.0) < 5%"
            }
        ]
    },
    {
        "stage" : "ANALYSIS_SUMMARY",
        "response" : {
            "Good" : "This was great!",
            # "Average" : "This was okay",
            "Bad" : "This was meh :/"
        }
    }
    ]

def parse_analysis_response(response: List) -> Tuple[List[str], List[str], List[str]]:
    """
    Parses the API response and extracts categorized factors with their reasons.
    Handles the verdict-based factor format.
    """
    try:
        # Find the analysis stage in the response list
        analysis_item = next(
            (item for item in response if item.get("stage") == "ANALYSE"),
            None
        )

        if not analysis_item:
            st.error("No analysis data found in the response")
            return [], [], []

        # Get the response list from analysis item
        analysis_list = analysis_item.get("response", [])

        if not analysis_list or not isinstance(analysis_list, list):
            st.error("Invalid analysis response format")
            return [], [], []

        # Initialize categorized factors
        good_factors = []
        average_factors = []
        bad_factors = []

        # Categorize factors based on verdict
        for item in analysis_list:
            factor_text = f"{item.get('factor')}: {item.get('reason')}"
            verdict = item.get('verdict', '').lower()

            if verdict == 'good':
                good_factors.append(factor_text)
            elif verdict == 'average':
                average_factors.append(factor_text)
            elif verdict == 'bad':
                bad_factors.append(factor_text)

        return good_factors, average_factors, bad_factors
    except Exception as e:
        st.error(f"Error parsing analysis response: {str(e)}")
        return [], [], []

def validate_pdf(pdf_bytes: bytes) -> bool:
    """
    Validates the uploaded PDF file.
    """
    if not pdf_bytes:
        return False

    # Check file signature for PDF (%PDF-)
    return pdf_bytes.startswith(b'%PDF-')

def displayPDF(file):
    # Opening file from file path
    if isinstance(file, str):
        file_bytes = open(file, 'rb').read()
    else:
        file_bytes = file
    # with open(file, "rb") as f:
    base64_pdf = base64.b64encode(file_bytes).decode('utf-8')

    # Embedding PDF in HTML
    pdf_display = F'<embed src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf">'

    # Displaying File
    st.markdown(pdf_display, unsafe_allow_html=True)