Spaces:
Sleeping
Sleeping
File size: 6,716 Bytes
0106d5f fd15458 bef8e94 0106d5f 9fcd439 0106d5f bef8e94 0106d5f bef8e94 0106d5f bef8e94 0106d5f bef8e94 0106d5f e249315 0106d5f e249315 0106d5f bef8e94 0106d5f bef8e94 0106d5f bef8e94 0106d5f bef8e94 0106d5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import re
import json
import streamlit as st
# from streamviz import gauge
from utils import validate_pdf
from styles import apply_custom_styles
from policy_analyser.analyse import Health
if 'GPT_KEY' not in os.environ or os.environ.get('GPT_KEY') in [None, '']:
os.environ['GPT_KEY'] = st.secrets['GPT_KEY']
if 'health_analyser' not in st.session_state:
st.session_state.health_analyser = Health()
def markdown_table_to_json(markdown):
lines = markdown.strip().split("\n")
# Extract headers
headers = [h.strip() for h in lines[0].split("|") if h.strip()]
# Extract rows
rows = []
for line in lines[2:]: # Skip header and separator line
values = [v.strip() for v in line.split("|") if v.strip()]
row_dict = dict(zip(headers, values))
rows.append(row_dict)
return rows
def visualise_pie_chart(analysis):
verdicts = {}
score = 0
total = 0
for verdict in ['GOOD', 'AVERAGE', 'BAD']:
table = analysis.split(f'<{verdict}>')[-1].split(f'</{verdict}>')[0]
table = markdown_table_to_json(table)
if len(table) > 0:
verdicts[verdict] = table
if verdict == 'GOOD':
score += 5 * len(table)
if verdict == 'AVERAGE':
score += 3 * len(table)
elif verdict == 'BAD':
score += len(table)
total += 5 * len(table)
gauge(gVal = total, gTitle = '', gMode = 'gauge+number',
grLow = total // 3,
grMid = 2 * (total // 3))
def main():
# Apply custom styles
apply_custom_styles()
# Header
st.markdown("""
<div class="header-container">
<img src="https://acko-brand.ackoassets.com/brand/vector-svg/gradient/horizontal-reverse.svg" height=50 width=100>
<h1>Insurance Policy Analyzer</h1>
<p>Upload and compare insurance policies</p>
</div>
""", unsafe_allow_html=True)
# File upload section
st.markdown('<div class="upload-container">', unsafe_allow_html=True)
uploaded_files = st.file_uploader("Choose policy PDF files", type="pdf", accept_multiple_files=True)
print(uploaded_files)
lob = st.selectbox(
'Type of insurance',
options = ['Health', 'Life', 'Auto'],
index = 0
)
st.markdown('</div>', unsafe_allow_html=True)
if uploaded_files and st.button('Analyse'):
# Create tabs for different views
tab1, tab2 = st.tabs(["Summary View", "Detailed Comparison"])
# Store analysis results
all_analyses = []
# Process each uploaded file
for uploaded_file in uploaded_files:
# Read PDF content
pdf_bytes = uploaded_file.read()
# displayPDF(pdf_bytes)
# Validate PDF
if not validate_pdf(pdf_bytes):
st.error(f"Invalid PDF file: {uploaded_file.name}")
continue
# Show loading state
with st.spinner(f"Analyzing {uploaded_file.name}..."):
try:
# Make API call
response = st.session_state.health_analyser(pdf_bytes)
analysis = next(
(item for item in response if item.get("stage") == "ANALYSE"), None
)['response']
analysis = analysis.split('<CUSTOMER_RESPONSE>')[-1].split('</CUSTOMER_RESPONSE>')[0]
suggestion = next(
(item for item in response if item.get("stage") == "SUGGEST"), None
)['response']
suggestion = suggestion.split('<POLICY_PITCH>')[-1].split('</POLICY_PITCH>')[0]
# Store results
all_analyses.append({
'name': uploaded_file.name,
'analysis' : analysis,
'suggestion' : suggestion
})
except Exception as e:
st.error(f"Error analyzing {uploaded_file.name}: {str(e)}")
# Summary View Tab
with tab1:
for idx, analysis in enumerate(all_analyses):
with st.expander(f"### Policy {idx + 1}: {analysis['name']}"):
with st.container():
st.markdown(re.sub(r'\<\/?(GOOD|AVERAGE|BAD|FINAL_VERDICT)\>', '', analysis['analysis']))
with st.container():
st.markdown('# Why Acko? π')
st.markdown(analysis['suggestion'])
# visualise_pie_chart(analysis['analysis'])
# Detailed Comparison Tab
with tab2:
st.warning('Coming Soon')
# if len(all_analyses) > 1:
# # Create comparison matrix
# factors_to_compare = set()
# for analysis in all_analyses:
# factors_to_compare.update(
# [f.split(':')[0] for f in analysis['good_factors'] +
# analysis['average_factors'] + analysis['bad_factors']]
# )
# # Create comparison table
# st.markdown("### Policy Comparison Matrix")
# comparison_data = []
# for factor in sorted(factors_to_compare):
# row = {'Factor': factor}
# for idx, analysis in enumerate(all_analyses):
# policy_name = f"Policy {idx + 1}"
# verdict = 'Not Found'
# for category in ['good_factors', 'average_factors', 'bad_factors']:
# for item in analysis[category]:
# if item.split(':')[0] == factor:
# verdict = category.split('_')[0].title()
# break
# row[policy_name] = verdict
# comparison_data.append(row)
# # Display comparison table
# st.table(comparison_data)
# else:
# st.info("Upload multiple policies to see comparison")
# Footer
st.markdown("""
<div style="margin-top: 50px; text-align: center; color: #666;">
<p>Upload one or more insurance policy PDFs to get detailed analysis and comparison.</p>
<p>We support all major insurance providers.</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
st.set_page_config(
page_title="Insurance Policy Analyzer",
page_icon="π",
layout="wide"
)
main() |