File size: 6,716 Bytes
0106d5f
fd15458
bef8e94
0106d5f
 
9fcd439
0106d5f
 
 
bef8e94
0106d5f
 
 
 
bef8e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0106d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef8e94
 
 
 
 
0106d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef8e94
0106d5f
 
 
e249315
0106d5f
 
 
e249315
0106d5f
 
 
bef8e94
0106d5f
 
 
 
 
 
 
 
 
 
 
bef8e94
0106d5f
 
 
bef8e94
0106d5f
 
 
bef8e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0106d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import re
import json

import streamlit as st
# from streamviz import gauge

from utils import validate_pdf
from styles import apply_custom_styles
from policy_analyser.analyse import Health

if 'GPT_KEY' not in os.environ or os.environ.get('GPT_KEY') in [None, '']:
    os.environ['GPT_KEY'] = st.secrets['GPT_KEY']

if 'health_analyser' not in st.session_state:
    st.session_state.health_analyser = Health()

def markdown_table_to_json(markdown):
    lines = markdown.strip().split("\n")
    
    # Extract headers
    headers = [h.strip() for h in lines[0].split("|") if h.strip()]
    
    # Extract rows
    rows = []
    for line in lines[2:]:  # Skip header and separator line
        values = [v.strip() for v in line.split("|") if v.strip()]
        row_dict = dict(zip(headers, values))
        rows.append(row_dict)
    
    return rows

def visualise_pie_chart(analysis):
    verdicts = {}
    score = 0
    total = 0
    for verdict in ['GOOD', 'AVERAGE', 'BAD']:
        table = analysis.split(f'<{verdict}>')[-1].split(f'</{verdict}>')[0]
        table = markdown_table_to_json(table)
        if len(table) > 0:
            verdicts[verdict] = table
            if verdict == 'GOOD':
                score += 5 * len(table)
            if verdict == 'AVERAGE':
                score += 3 * len(table)
            elif verdict == 'BAD':
                score += len(table)
            total += 5 * len(table)
    gauge(gVal = total, gTitle = '', gMode = 'gauge+number',
          grLow = total // 3,
          grMid = 2 * (total // 3))

def main():
    # Apply custom styles
    apply_custom_styles()

    # Header
    st.markdown("""
        <div class="header-container">
            <img src="https://acko-brand.ackoassets.com/brand/vector-svg/gradient/horizontal-reverse.svg" height=50 width=100>
                <h1>Insurance Policy Analyzer</h1>
            <p>Upload and compare insurance policies</p>
        </div>
    """, unsafe_allow_html=True)

    # File upload section
    st.markdown('<div class="upload-container">', unsafe_allow_html=True)
    uploaded_files = st.file_uploader("Choose policy PDF files", type="pdf", accept_multiple_files=True)
    print(uploaded_files)
    lob = st.selectbox(
        'Type of insurance',
        options = ['Health', 'Life', 'Auto'],
        index = 0
    )
    st.markdown('</div>', unsafe_allow_html=True)

    if uploaded_files and st.button('Analyse'):
        # Create tabs for different views
        tab1, tab2 = st.tabs(["Summary View", "Detailed Comparison"])

        # Store analysis results
        all_analyses = []

        # Process each uploaded file
        for uploaded_file in uploaded_files:
            # Read PDF content
            pdf_bytes = uploaded_file.read()
            # displayPDF(pdf_bytes)

            # Validate PDF
            if not validate_pdf(pdf_bytes):
                st.error(f"Invalid PDF file: {uploaded_file.name}")
                continue

            # Show loading state
            with st.spinner(f"Analyzing {uploaded_file.name}..."):
                try:
                    # Make API call
                    response = st.session_state.health_analyser(pdf_bytes)
                    analysis = next(
                        (item for item in response if item.get("stage") == "ANALYSE"), None
                    )['response']
                    analysis = analysis.split('<CUSTOMER_RESPONSE>')[-1].split('</CUSTOMER_RESPONSE>')[0]
                    suggestion = next(
                        (item for item in response if item.get("stage") == "SUGGEST"), None
                    )['response']
                    suggestion = suggestion.split('<POLICY_PITCH>')[-1].split('</POLICY_PITCH>')[0]
                    # Store results
                    all_analyses.append({
                        'name': uploaded_file.name,
                        'analysis' : analysis,
                        'suggestion' : suggestion
                    })

                except Exception as e:
                    st.error(f"Error analyzing {uploaded_file.name}: {str(e)}")

        # Summary View Tab
        with tab1:
            for idx, analysis in enumerate(all_analyses):
                with st.expander(f"### Policy {idx + 1}: {analysis['name']}"):
                    with st.container():
                        st.markdown(re.sub(r'\<\/?(GOOD|AVERAGE|BAD|FINAL_VERDICT)\>', '', analysis['analysis']))
                    with st.container():
                        st.markdown('# Why Acko? πŸš€')
                        st.markdown(analysis['suggestion'])
                        # visualise_pie_chart(analysis['analysis'])

        # Detailed Comparison Tab
        with tab2:
            st.warning('Coming Soon')
            # if len(all_analyses) > 1:
            #     # Create comparison matrix
            #     factors_to_compare = set()
            #     for analysis in all_analyses:
            #         factors_to_compare.update(
            #             [f.split(':')[0] for f in analysis['good_factors'] + 
            #              analysis['average_factors'] + analysis['bad_factors']]
            #         )

            #     # Create comparison table
            #     st.markdown("### Policy Comparison Matrix")

            #     comparison_data = []
            #     for factor in sorted(factors_to_compare):
            #         row = {'Factor': factor}
            #         for idx, analysis in enumerate(all_analyses):
            #             policy_name = f"Policy {idx + 1}"
            #             verdict = 'Not Found'
            #             for category in ['good_factors', 'average_factors', 'bad_factors']:
            #                 for item in analysis[category]:
            #                     if item.split(':')[0] == factor:
            #                         verdict = category.split('_')[0].title()
            #                         break
            #             row[policy_name] = verdict
            #         comparison_data.append(row)

            #     # Display comparison table
            #     st.table(comparison_data)
            # else:
            #     st.info("Upload multiple policies to see comparison")

    # Footer
    st.markdown("""
        <div style="margin-top: 50px; text-align: center; color: #666;">
            <p>Upload one or more insurance policy PDFs to get detailed analysis and comparison.</p>
            <p>We support all major insurance providers.</p>
        </div>
    """, unsafe_allow_html=True)

if __name__ == "__main__":
    st.set_page_config(
        page_title="Insurance Policy Analyzer",
        page_icon="πŸ“‹",
        layout="wide"
    )
    main()