Spaces:
Runtime error
Runtime error
File size: 58,128 Bytes
6cf89af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
2023-02-06 08:28:45,031 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,036 Model: "TextClassifier(
(decoder): Linear(in_features=512, out_features=3, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
(locked_dropout): LockedDropout(p=0.0)
(word_dropout): WordDropout(p=0.0)
(loss_function): CrossEntropyLoss()
(document_embeddings): DocumentLSTMEmbeddings(
(embeddings): StackedEmbeddings(
(list_embedding_0): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.25, inplace=False)
(encoder): Embedding(275, 100)
(rnn): LSTM(100, 1024)
(decoder): Linear(in_features=1024, out_features=275, bias=True)
)
)
)
(word_reprojection_map): Linear(in_features=1024, out_features=256, bias=True)
(rnn): GRU(256, 512)
(dropout): Dropout(p=0.5, inplace=False)
)
(weights): None
(weight_tensor) None
)"
2023-02-06 08:28:45,039 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,042 Corpus: "Corpus: 8500 train + 1500 dev + 359 test sentences"
2023-02-06 08:28:45,045 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,048 Parameters:
2023-02-06 08:28:45,051 - learning_rate: "0.010000"
2023-02-06 08:28:45,052 - mini_batch_size: "64"
2023-02-06 08:28:45,056 - patience: "3"
2023-02-06 08:28:45,057 - anneal_factor: "0.5"
2023-02-06 08:28:45,061 - max_epochs: "35"
2023-02-06 08:28:45,063 - shuffle: "True"
2023-02-06 08:28:45,069 - train_with_dev: "False"
2023-02-06 08:28:45,071 - batch_growth_annealing: "False"
2023-02-06 08:28:45,075 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,078 Model training base path: "/content/drive/MyDrive/Colab Notebooks/models/flair-sentiment-classifier"
2023-02-06 08:28:45,081 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,083 Device: cuda:0
2023-02-06 08:28:45,085 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,089 Embeddings storage mode: gpu
2023-02-06 08:28:45,091 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:46,882 epoch 1 - iter 13/133 - loss 0.01562834 - samples/sec: 514.51 - lr: 0.010000
2023-02-06 08:28:48,397 epoch 1 - iter 26/133 - loss 0.01481466 - samples/sec: 748.73 - lr: 0.010000
2023-02-06 08:28:49,638 epoch 1 - iter 39/133 - loss 0.01423043 - samples/sec: 772.85 - lr: 0.010000
2023-02-06 08:28:51,189 epoch 1 - iter 52/133 - loss 0.01381341 - samples/sec: 600.83 - lr: 0.010000
2023-02-06 08:28:52,402 epoch 1 - iter 65/133 - loss 0.01349711 - samples/sec: 796.47 - lr: 0.010000
2023-02-06 08:28:53,877 epoch 1 - iter 78/133 - loss 0.01323276 - samples/sec: 765.73 - lr: 0.010000
2023-02-06 08:28:55,144 epoch 1 - iter 91/133 - loss 0.01301969 - samples/sec: 759.35 - lr: 0.010000
2023-02-06 08:28:56,401 epoch 1 - iter 104/133 - loss 0.01283645 - samples/sec: 765.85 - lr: 0.010000
2023-02-06 08:28:57,895 epoch 1 - iter 117/133 - loss 0.01267868 - samples/sec: 760.35 - lr: 0.010000
2023-02-06 08:28:59,155 epoch 1 - iter 130/133 - loss 0.01254156 - samples/sec: 766.70 - lr: 0.010000
2023-02-06 08:28:59,435 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:59,440 EPOCH 1 done: loss 0.0125 - lr 0.010000
2023-02-06 08:29:02,345 Evaluating as a multi-label problem: False
2023-02-06 08:29:02,360 DEV : loss 0.01149754598736763 - f1-score (micro avg) 0.5393
2023-02-06 08:29:02,938 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:02,944 saving best model
2023-02-06 08:29:03,019 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:04,350 epoch 2 - iter 13/133 - loss 0.01134125 - samples/sec: 713.12 - lr: 0.010000
2023-02-06 08:29:05,867 epoch 2 - iter 26/133 - loss 0.01133783 - samples/sec: 745.31 - lr: 0.010000
2023-02-06 08:29:07,096 epoch 2 - iter 39/133 - loss 0.01130036 - samples/sec: 785.18 - lr: 0.010000
2023-02-06 08:29:08,398 epoch 2 - iter 52/133 - loss 0.01126930 - samples/sec: 739.05 - lr: 0.010000
2023-02-06 08:29:10,210 epoch 2 - iter 65/133 - loss 0.01123679 - samples/sec: 611.49 - lr: 0.010000
2023-02-06 08:29:12,013 epoch 2 - iter 78/133 - loss 0.01119918 - samples/sec: 563.65 - lr: 0.010000
2023-02-06 08:29:13,567 epoch 2 - iter 91/133 - loss 0.01119660 - samples/sec: 722.13 - lr: 0.010000
2023-02-06 08:29:14,863 epoch 2 - iter 104/133 - loss 0.01118887 - samples/sec: 739.97 - lr: 0.010000
2023-02-06 08:29:16,413 epoch 2 - iter 117/133 - loss 0.01117338 - samples/sec: 736.63 - lr: 0.010000
2023-02-06 08:29:17,679 epoch 2 - iter 130/133 - loss 0.01115977 - samples/sec: 754.47 - lr: 0.010000
2023-02-06 08:29:17,964 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:17,967 EPOCH 2 done: loss 0.0112 - lr 0.010000
2023-02-06 08:29:20,384 Evaluating as a multi-label problem: False
2023-02-06 08:29:20,400 DEV : loss 0.011094754561781883 - f1-score (micro avg) 0.586
2023-02-06 08:29:20,760 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:20,767 saving best model
2023-02-06 08:29:20,836 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:22,455 epoch 3 - iter 13/133 - loss 0.01100920 - samples/sec: 577.11 - lr: 0.010000
2023-02-06 08:29:23,739 epoch 3 - iter 26/133 - loss 0.01100166 - samples/sec: 748.26 - lr: 0.010000
2023-02-06 08:29:25,256 epoch 3 - iter 39/133 - loss 0.01099206 - samples/sec: 614.87 - lr: 0.010000
2023-02-06 08:29:26,543 epoch 3 - iter 52/133 - loss 0.01096206 - samples/sec: 747.35 - lr: 0.010000
2023-02-06 08:29:28,045 epoch 3 - iter 65/133 - loss 0.01093502 - samples/sec: 756.93 - lr: 0.010000
2023-02-06 08:29:29,300 epoch 3 - iter 78/133 - loss 0.01092986 - samples/sec: 767.76 - lr: 0.010000
2023-02-06 08:29:30,899 epoch 3 - iter 91/133 - loss 0.01094036 - samples/sec: 700.02 - lr: 0.010000
2023-02-06 08:29:32,167 epoch 3 - iter 104/133 - loss 0.01093898 - samples/sec: 759.88 - lr: 0.010000
2023-02-06 08:29:33,482 epoch 3 - iter 117/133 - loss 0.01092654 - samples/sec: 724.74 - lr: 0.010000
2023-02-06 08:29:34,996 epoch 3 - iter 130/133 - loss 0.01091851 - samples/sec: 747.17 - lr: 0.010000
2023-02-06 08:29:35,285 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:35,288 EPOCH 3 done: loss 0.0109 - lr 0.010000
2023-02-06 08:29:37,771 Evaluating as a multi-label problem: False
2023-02-06 08:29:37,787 DEV : loss 0.010945815593004227 - f1-score (micro avg) 0.5833
2023-02-06 08:29:38,166 BAD EPOCHS (no improvement): 1
2023-02-06 08:29:38,171 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:39,771 epoch 4 - iter 13/133 - loss 0.01088269 - samples/sec: 703.41 - lr: 0.010000
2023-02-06 08:29:41,093 epoch 4 - iter 26/133 - loss 0.01079631 - samples/sec: 727.27 - lr: 0.010000
2023-02-06 08:29:42,388 epoch 4 - iter 39/133 - loss 0.01080397 - samples/sec: 731.61 - lr: 0.010000
2023-02-06 08:29:43,901 epoch 4 - iter 52/133 - loss 0.01079299 - samples/sec: 748.17 - lr: 0.010000
2023-02-06 08:29:45,173 epoch 4 - iter 65/133 - loss 0.01080453 - samples/sec: 756.93 - lr: 0.010000
2023-02-06 08:29:46,704 epoch 4 - iter 78/133 - loss 0.01078781 - samples/sec: 742.45 - lr: 0.010000
2023-02-06 08:29:48,004 epoch 4 - iter 91/133 - loss 0.01077505 - samples/sec: 739.13 - lr: 0.010000
2023-02-06 08:29:49,566 epoch 4 - iter 104/133 - loss 0.01077253 - samples/sec: 719.85 - lr: 0.010000
2023-02-06 08:29:50,799 epoch 4 - iter 117/133 - loss 0.01077099 - samples/sec: 782.87 - lr: 0.010000
2023-02-06 08:29:52,309 epoch 4 - iter 130/133 - loss 0.01079835 - samples/sec: 751.86 - lr: 0.010000
2023-02-06 08:29:52,598 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:52,600 EPOCH 4 done: loss 0.0108 - lr 0.010000
2023-02-06 08:29:54,806 Evaluating as a multi-label problem: False
2023-02-06 08:29:54,823 DEV : loss 0.010844088159501553 - f1-score (micro avg) 0.5867
2023-02-06 08:29:55,416 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:55,422 saving best model
2023-02-06 08:29:55,494 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:56,823 epoch 5 - iter 13/133 - loss 0.01067723 - samples/sec: 718.01 - lr: 0.010000
2023-02-06 08:29:58,344 epoch 5 - iter 26/133 - loss 0.01059902 - samples/sec: 743.92 - lr: 0.010000
2023-02-06 08:29:59,632 epoch 5 - iter 39/133 - loss 0.01065991 - samples/sec: 752.37 - lr: 0.010000
2023-02-06 08:30:01,148 epoch 5 - iter 52/133 - loss 0.01066396 - samples/sec: 742.67 - lr: 0.010000
2023-02-06 08:30:02,462 epoch 5 - iter 65/133 - loss 0.01067246 - samples/sec: 721.77 - lr: 0.010000
2023-02-06 08:30:03,991 epoch 5 - iter 78/133 - loss 0.01067908 - samples/sec: 764.43 - lr: 0.010000
2023-02-06 08:30:05,279 epoch 5 - iter 91/133 - loss 0.01070105 - samples/sec: 746.56 - lr: 0.010000
2023-02-06 08:30:06,504 epoch 5 - iter 104/133 - loss 0.01071328 - samples/sec: 788.19 - lr: 0.010000
2023-02-06 08:30:07,981 epoch 5 - iter 117/133 - loss 0.01069141 - samples/sec: 768.06 - lr: 0.010000
2023-02-06 08:30:09,278 epoch 5 - iter 130/133 - loss 0.01069258 - samples/sec: 736.98 - lr: 0.010000
2023-02-06 08:30:09,584 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:09,591 EPOCH 5 done: loss 0.0107 - lr 0.010000
2023-02-06 08:30:12,079 Evaluating as a multi-label problem: False
2023-02-06 08:30:12,096 DEV : loss 0.010764073580503464 - f1-score (micro avg) 0.59
2023-02-06 08:30:12,666 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:12,684 saving best model
2023-02-06 08:30:12,758 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:14,153 epoch 6 - iter 13/133 - loss 0.01071924 - samples/sec: 682.06 - lr: 0.010000
2023-02-06 08:30:15,468 epoch 6 - iter 26/133 - loss 0.01071274 - samples/sec: 726.60 - lr: 0.010000
2023-02-06 08:30:16,995 epoch 6 - iter 39/133 - loss 0.01072073 - samples/sec: 745.06 - lr: 0.010000
2023-02-06 08:30:18,256 epoch 6 - iter 52/133 - loss 0.01069609 - samples/sec: 766.36 - lr: 0.010000
2023-02-06 08:30:19,760 epoch 6 - iter 65/133 - loss 0.01067637 - samples/sec: 621.63 - lr: 0.010000
2023-02-06 08:30:21,150 epoch 6 - iter 78/133 - loss 0.01069997 - samples/sec: 698.03 - lr: 0.010000
2023-02-06 08:30:22,666 epoch 6 - iter 91/133 - loss 0.01067124 - samples/sec: 747.15 - lr: 0.010000
2023-02-06 08:30:23,937 epoch 6 - iter 104/133 - loss 0.01065074 - samples/sec: 756.77 - lr: 0.010000
2023-02-06 08:30:25,196 epoch 6 - iter 117/133 - loss 0.01065426 - samples/sec: 759.07 - lr: 0.010000
2023-02-06 08:30:26,726 epoch 6 - iter 130/133 - loss 0.01065274 - samples/sec: 739.37 - lr: 0.010000
2023-02-06 08:30:27,011 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:27,016 EPOCH 6 done: loss 0.0107 - lr 0.010000
2023-02-06 08:30:29,488 Evaluating as a multi-label problem: False
2023-02-06 08:30:29,504 DEV : loss 0.010709869675338268 - f1-score (micro avg) 0.5953
2023-02-06 08:30:29,884 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:29,891 saving best model
2023-02-06 08:30:29,962 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:31,568 epoch 7 - iter 13/133 - loss 0.01074821 - samples/sec: 588.47 - lr: 0.010000
2023-02-06 08:30:32,838 epoch 7 - iter 26/133 - loss 0.01067320 - samples/sec: 752.01 - lr: 0.010000
2023-02-06 08:30:34,326 epoch 7 - iter 39/133 - loss 0.01067867 - samples/sec: 764.30 - lr: 0.010000
2023-02-06 08:30:35,675 epoch 7 - iter 52/133 - loss 0.01066511 - samples/sec: 715.33 - lr: 0.010000
2023-02-06 08:30:37,160 epoch 7 - iter 65/133 - loss 0.01066500 - samples/sec: 774.66 - lr: 0.010000
2023-02-06 08:30:38,384 epoch 7 - iter 78/133 - loss 0.01064703 - samples/sec: 786.21 - lr: 0.010000
2023-02-06 08:30:39,656 epoch 7 - iter 91/133 - loss 0.01064059 - samples/sec: 752.36 - lr: 0.010000
2023-02-06 08:30:41,183 epoch 7 - iter 104/133 - loss 0.01064299 - samples/sec: 741.82 - lr: 0.010000
2023-02-06 08:30:42,411 epoch 7 - iter 117/133 - loss 0.01063663 - samples/sec: 782.15 - lr: 0.010000
2023-02-06 08:30:43,918 epoch 7 - iter 130/133 - loss 0.01062067 - samples/sec: 746.86 - lr: 0.010000
2023-02-06 08:30:44,207 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:44,212 EPOCH 7 done: loss 0.0106 - lr 0.010000
2023-02-06 08:30:46,609 Evaluating as a multi-label problem: False
2023-02-06 08:30:46,625 DEV : loss 0.010663843713700771 - f1-score (micro avg) 0.604
2023-02-06 08:30:46,984 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:46,991 saving best model
2023-02-06 08:30:47,072 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:48,638 epoch 8 - iter 13/133 - loss 0.01043837 - samples/sec: 601.87 - lr: 0.010000
2023-02-06 08:30:49,893 epoch 8 - iter 26/133 - loss 0.01051882 - samples/sec: 760.45 - lr: 0.010000
2023-02-06 08:30:51,166 epoch 8 - iter 39/133 - loss 0.01054135 - samples/sec: 761.95 - lr: 0.010000
2023-02-06 08:30:52,624 epoch 8 - iter 52/133 - loss 0.01056330 - samples/sec: 784.40 - lr: 0.010000
2023-02-06 08:30:53,864 epoch 8 - iter 65/133 - loss 0.01058674 - samples/sec: 788.25 - lr: 0.010000
2023-02-06 08:30:55,348 epoch 8 - iter 78/133 - loss 0.01057453 - samples/sec: 632.25 - lr: 0.010000
2023-02-06 08:30:56,643 epoch 8 - iter 91/133 - loss 0.01056818 - samples/sec: 743.01 - lr: 0.010000
2023-02-06 08:30:58,165 epoch 8 - iter 104/133 - loss 0.01056378 - samples/sec: 754.99 - lr: 0.010000
2023-02-06 08:30:59,473 epoch 8 - iter 117/133 - loss 0.01055726 - samples/sec: 740.74 - lr: 0.010000
2023-02-06 08:31:00,790 epoch 8 - iter 130/133 - loss 0.01054234 - samples/sec: 730.40 - lr: 0.010000
2023-02-06 08:31:01,299 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:01,301 EPOCH 8 done: loss 0.0106 - lr 0.010000
2023-02-06 08:31:03,556 Evaluating as a multi-label problem: False
2023-02-06 08:31:03,573 DEV : loss 0.010619796812534332 - f1-score (micro avg) 0.602
2023-02-06 08:31:04,148 BAD EPOCHS (no improvement): 1
2023-02-06 08:31:04,153 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:05,493 epoch 9 - iter 13/133 - loss 0.01055787 - samples/sec: 714.38 - lr: 0.010000
2023-02-06 08:31:06,991 epoch 9 - iter 26/133 - loss 0.01055880 - samples/sec: 756.84 - lr: 0.010000
2023-02-06 08:31:08,220 epoch 9 - iter 39/133 - loss 0.01058857 - samples/sec: 784.11 - lr: 0.010000
2023-02-06 08:31:09,733 epoch 9 - iter 52/133 - loss 0.01050204 - samples/sec: 743.77 - lr: 0.010000
2023-02-06 08:31:11,006 epoch 9 - iter 65/133 - loss 0.01049462 - samples/sec: 757.49 - lr: 0.010000
2023-02-06 08:31:12,320 epoch 9 - iter 78/133 - loss 0.01049927 - samples/sec: 726.38 - lr: 0.010000
2023-02-06 08:31:13,836 epoch 9 - iter 91/133 - loss 0.01053675 - samples/sec: 753.53 - lr: 0.010000
2023-02-06 08:31:15,093 epoch 9 - iter 104/133 - loss 0.01051643 - samples/sec: 763.35 - lr: 0.010000
2023-02-06 08:31:16,571 epoch 9 - iter 117/133 - loss 0.01051333 - samples/sec: 770.43 - lr: 0.010000
2023-02-06 08:31:17,840 epoch 9 - iter 130/133 - loss 0.01052863 - samples/sec: 764.73 - lr: 0.010000
2023-02-06 08:31:18,111 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:18,112 EPOCH 9 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:20,513 Evaluating as a multi-label problem: False
2023-02-06 08:31:20,529 DEV : loss 0.010611701756715775 - f1-score (micro avg) 0.6127
2023-02-06 08:31:21,099 BAD EPOCHS (no improvement): 0
2023-02-06 08:31:21,105 saving best model
2023-02-06 08:31:21,180 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:22,488 epoch 10 - iter 13/133 - loss 0.01068018 - samples/sec: 735.19 - lr: 0.010000
2023-02-06 08:31:23,814 epoch 10 - iter 26/133 - loss 0.01048881 - samples/sec: 719.40 - lr: 0.010000
2023-02-06 08:31:25,348 epoch 10 - iter 39/133 - loss 0.01057341 - samples/sec: 607.48 - lr: 0.010000
2023-02-06 08:31:26,612 epoch 10 - iter 52/133 - loss 0.01053287 - samples/sec: 762.66 - lr: 0.010000
2023-02-06 08:31:28,080 epoch 10 - iter 65/133 - loss 0.01053009 - samples/sec: 780.80 - lr: 0.010000
2023-02-06 08:31:29,348 epoch 10 - iter 78/133 - loss 0.01049424 - samples/sec: 765.03 - lr: 0.010000
2023-02-06 08:31:30,907 epoch 10 - iter 91/133 - loss 0.01049714 - samples/sec: 602.01 - lr: 0.010000
2023-02-06 08:31:32,299 epoch 10 - iter 104/133 - loss 0.01051002 - samples/sec: 688.23 - lr: 0.010000
2023-02-06 08:31:33,585 epoch 10 - iter 117/133 - loss 0.01050991 - samples/sec: 751.61 - lr: 0.010000
2023-02-06 08:31:35,136 epoch 10 - iter 130/133 - loss 0.01049037 - samples/sec: 721.95 - lr: 0.010000
2023-02-06 08:31:35,429 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:35,431 EPOCH 10 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:37,895 Evaluating as a multi-label problem: False
2023-02-06 08:31:37,910 DEV : loss 0.010555021464824677 - f1-score (micro avg) 0.612
2023-02-06 08:31:38,250 BAD EPOCHS (no improvement): 1
2023-02-06 08:31:38,266 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:39,815 epoch 11 - iter 13/133 - loss 0.01014661 - samples/sec: 717.23 - lr: 0.010000
2023-02-06 08:31:41,095 epoch 11 - iter 26/133 - loss 0.01037157 - samples/sec: 747.91 - lr: 0.010000
2023-02-06 08:31:42,350 epoch 11 - iter 39/133 - loss 0.01039031 - samples/sec: 771.90 - lr: 0.010000
2023-02-06 08:31:43,850 epoch 11 - iter 52/133 - loss 0.01048393 - samples/sec: 763.72 - lr: 0.010000
2023-02-06 08:31:45,153 epoch 11 - iter 65/133 - loss 0.01050528 - samples/sec: 737.89 - lr: 0.010000
2023-02-06 08:31:46,661 epoch 11 - iter 78/133 - loss 0.01048936 - samples/sec: 752.50 - lr: 0.010000
2023-02-06 08:31:47,936 epoch 11 - iter 91/133 - loss 0.01046032 - samples/sec: 756.43 - lr: 0.010000
2023-02-06 08:31:49,443 epoch 11 - iter 104/133 - loss 0.01049842 - samples/sec: 750.46 - lr: 0.010000
2023-02-06 08:31:50,667 epoch 11 - iter 117/133 - loss 0.01048207 - samples/sec: 788.09 - lr: 0.010000
2023-02-06 08:31:51,915 epoch 11 - iter 130/133 - loss 0.01047867 - samples/sec: 764.34 - lr: 0.010000
2023-02-06 08:31:52,443 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:52,447 EPOCH 11 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:54,642 Evaluating as a multi-label problem: False
2023-02-06 08:31:54,659 DEV : loss 0.010583124123513699 - f1-score (micro avg) 0.618
2023-02-06 08:31:55,235 BAD EPOCHS (no improvement): 0
2023-02-06 08:31:55,243 saving best model
2023-02-06 08:31:55,324 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:56,599 epoch 12 - iter 13/133 - loss 0.01034765 - samples/sec: 758.67 - lr: 0.010000
2023-02-06 08:31:58,049 epoch 12 - iter 26/133 - loss 0.01038689 - samples/sec: 649.83 - lr: 0.010000
2023-02-06 08:31:59,293 epoch 12 - iter 39/133 - loss 0.01041491 - samples/sec: 771.48 - lr: 0.010000
2023-02-06 08:32:00,827 epoch 12 - iter 52/133 - loss 0.01039636 - samples/sec: 749.22 - lr: 0.010000
2023-02-06 08:32:02,125 epoch 12 - iter 65/133 - loss 0.01039765 - samples/sec: 734.58 - lr: 0.010000
2023-02-06 08:32:03,651 epoch 12 - iter 78/133 - loss 0.01037797 - samples/sec: 742.60 - lr: 0.010000
2023-02-06 08:32:04,912 epoch 12 - iter 91/133 - loss 0.01037713 - samples/sec: 767.06 - lr: 0.010000
2023-02-06 08:32:06,155 epoch 12 - iter 104/133 - loss 0.01039333 - samples/sec: 778.01 - lr: 0.010000
2023-02-06 08:32:07,679 epoch 12 - iter 117/133 - loss 0.01039785 - samples/sec: 612.76 - lr: 0.010000
2023-02-06 08:32:08,958 epoch 12 - iter 130/133 - loss 0.01041191 - samples/sec: 749.49 - lr: 0.010000
2023-02-06 08:32:09,221 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:09,225 EPOCH 12 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:11,743 Evaluating as a multi-label problem: False
2023-02-06 08:32:11,761 DEV : loss 0.010490193963050842 - f1-score (micro avg) 0.6233
2023-02-06 08:32:12,343 BAD EPOCHS (no improvement): 0
2023-02-06 08:32:12,347 saving best model
2023-02-06 08:32:12,425 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:13,768 epoch 13 - iter 13/133 - loss 0.01044893 - samples/sec: 711.51 - lr: 0.010000
2023-02-06 08:32:15,331 epoch 13 - iter 26/133 - loss 0.01037701 - samples/sec: 597.05 - lr: 0.010000
2023-02-06 08:32:16,636 epoch 13 - iter 39/133 - loss 0.01041042 - samples/sec: 729.64 - lr: 0.010000
2023-02-06 08:32:18,179 epoch 13 - iter 52/133 - loss 0.01039558 - samples/sec: 639.59 - lr: 0.010000
2023-02-06 08:32:20,357 epoch 13 - iter 65/133 - loss 0.01036643 - samples/sec: 453.47 - lr: 0.010000
2023-02-06 08:32:22,076 epoch 13 - iter 78/133 - loss 0.01034448 - samples/sec: 576.82 - lr: 0.010000
2023-02-06 08:32:23,544 epoch 13 - iter 91/133 - loss 0.01037494 - samples/sec: 776.14 - lr: 0.010000
2023-02-06 08:32:24,857 epoch 13 - iter 104/133 - loss 0.01038988 - samples/sec: 723.98 - lr: 0.010000
2023-02-06 08:32:26,302 epoch 13 - iter 117/133 - loss 0.01037204 - samples/sec: 803.02 - lr: 0.010000
2023-02-06 08:32:27,579 epoch 13 - iter 130/133 - loss 0.01037025 - samples/sec: 756.57 - lr: 0.010000
2023-02-06 08:32:27,857 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:27,858 EPOCH 13 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:30,369 Evaluating as a multi-label problem: False
2023-02-06 08:32:30,385 DEV : loss 0.010483094491064548 - f1-score (micro avg) 0.6207
2023-02-06 08:32:30,744 BAD EPOCHS (no improvement): 1
2023-02-06 08:32:30,752 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:32,325 epoch 14 - iter 13/133 - loss 0.01026158 - samples/sec: 717.41 - lr: 0.010000
2023-02-06 08:32:33,586 epoch 14 - iter 26/133 - loss 0.01037027 - samples/sec: 762.17 - lr: 0.010000
2023-02-06 08:32:35,070 epoch 14 - iter 39/133 - loss 0.01036379 - samples/sec: 774.03 - lr: 0.010000
2023-02-06 08:32:36,383 epoch 14 - iter 52/133 - loss 0.01035813 - samples/sec: 729.67 - lr: 0.010000
2023-02-06 08:32:37,889 epoch 14 - iter 65/133 - loss 0.01031572 - samples/sec: 748.65 - lr: 0.010000
2023-02-06 08:32:39,182 epoch 14 - iter 78/133 - loss 0.01034433 - samples/sec: 743.14 - lr: 0.010000
2023-02-06 08:32:40,475 epoch 14 - iter 91/133 - loss 0.01037816 - samples/sec: 742.25 - lr: 0.010000
2023-02-06 08:32:41,954 epoch 14 - iter 104/133 - loss 0.01039795 - samples/sec: 782.25 - lr: 0.010000
2023-02-06 08:32:43,225 epoch 14 - iter 117/133 - loss 0.01038837 - samples/sec: 761.71 - lr: 0.010000
2023-02-06 08:32:44,737 epoch 14 - iter 130/133 - loss 0.01036175 - samples/sec: 745.28 - lr: 0.010000
2023-02-06 08:32:45,035 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:45,040 EPOCH 14 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:47,510 Evaluating as a multi-label problem: False
2023-02-06 08:32:47,528 DEV : loss 0.010432829149067402 - f1-score (micro avg) 0.626
2023-02-06 08:32:47,863 BAD EPOCHS (no improvement): 0
2023-02-06 08:32:47,871 saving best model
2023-02-06 08:32:47,944 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:49,537 epoch 15 - iter 13/133 - loss 0.01019386 - samples/sec: 698.75 - lr: 0.010000
2023-02-06 08:32:50,800 epoch 15 - iter 26/133 - loss 0.01019158 - samples/sec: 758.25 - lr: 0.010000
2023-02-06 08:32:52,065 epoch 15 - iter 39/133 - loss 0.01015538 - samples/sec: 759.68 - lr: 0.010000
2023-02-06 08:32:53,509 epoch 15 - iter 52/133 - loss 0.01023823 - samples/sec: 804.56 - lr: 0.010000
2023-02-06 08:32:54,834 epoch 15 - iter 65/133 - loss 0.01026660 - samples/sec: 722.21 - lr: 0.010000
2023-02-06 08:32:56,442 epoch 15 - iter 78/133 - loss 0.01025501 - samples/sec: 717.72 - lr: 0.010000
2023-02-06 08:32:57,718 epoch 15 - iter 91/133 - loss 0.01024956 - samples/sec: 756.16 - lr: 0.010000
2023-02-06 08:32:59,173 epoch 15 - iter 104/133 - loss 0.01028768 - samples/sec: 783.99 - lr: 0.010000
2023-02-06 08:33:00,444 epoch 15 - iter 117/133 - loss 0.01027921 - samples/sec: 758.72 - lr: 0.010000
2023-02-06 08:33:01,708 epoch 15 - iter 130/133 - loss 0.01030246 - samples/sec: 760.06 - lr: 0.010000
2023-02-06 08:33:02,242 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:02,248 EPOCH 15 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:04,549 Evaluating as a multi-label problem: False
2023-02-06 08:33:04,568 DEV : loss 0.010397534817457199 - f1-score (micro avg) 0.6247
2023-02-06 08:33:05,171 BAD EPOCHS (no improvement): 1
2023-02-06 08:33:05,181 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:06,547 epoch 16 - iter 13/133 - loss 0.01041342 - samples/sec: 696.13 - lr: 0.010000
2023-02-06 08:33:08,089 epoch 16 - iter 26/133 - loss 0.01036971 - samples/sec: 726.77 - lr: 0.010000
2023-02-06 08:33:09,375 epoch 16 - iter 39/133 - loss 0.01029897 - samples/sec: 745.27 - lr: 0.010000
2023-02-06 08:33:10,662 epoch 16 - iter 52/133 - loss 0.01030162 - samples/sec: 746.88 - lr: 0.010000
2023-02-06 08:33:12,125 epoch 16 - iter 65/133 - loss 0.01031824 - samples/sec: 780.89 - lr: 0.010000
2023-02-06 08:33:13,387 epoch 16 - iter 78/133 - loss 0.01031728 - samples/sec: 754.65 - lr: 0.010000
2023-02-06 08:33:14,895 epoch 16 - iter 91/133 - loss 0.01027123 - samples/sec: 757.20 - lr: 0.010000
2023-02-06 08:33:16,162 epoch 16 - iter 104/133 - loss 0.01027054 - samples/sec: 764.32 - lr: 0.010000
2023-02-06 08:33:17,639 epoch 16 - iter 117/133 - loss 0.01024219 - samples/sec: 633.84 - lr: 0.010000
2023-02-06 08:33:18,899 epoch 16 - iter 130/133 - loss 0.01026610 - samples/sec: 758.90 - lr: 0.010000
2023-02-06 08:33:19,184 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:19,188 EPOCH 16 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:21,632 Evaluating as a multi-label problem: False
2023-02-06 08:33:21,649 DEV : loss 0.010406638495624065 - f1-score (micro avg) 0.6253
2023-02-06 08:33:22,222 BAD EPOCHS (no improvement): 2
2023-02-06 08:33:22,234 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:23,528 epoch 17 - iter 13/133 - loss 0.01033387 - samples/sec: 738.38 - lr: 0.010000
2023-02-06 08:33:24,760 epoch 17 - iter 26/133 - loss 0.01031095 - samples/sec: 781.92 - lr: 0.010000
2023-02-06 08:33:26,300 epoch 17 - iter 39/133 - loss 0.01028919 - samples/sec: 746.79 - lr: 0.010000
2023-02-06 08:33:27,590 epoch 17 - iter 52/133 - loss 0.01030368 - samples/sec: 739.39 - lr: 0.010000
2023-02-06 08:33:29,070 epoch 17 - iter 65/133 - loss 0.01029647 - samples/sec: 634.36 - lr: 0.010000
2023-02-06 08:33:30,298 epoch 17 - iter 78/133 - loss 0.01029278 - samples/sec: 782.85 - lr: 0.010000
2023-02-06 08:33:31,598 epoch 17 - iter 91/133 - loss 0.01028871 - samples/sec: 734.99 - lr: 0.010000
2023-02-06 08:33:33,082 epoch 17 - iter 104/133 - loss 0.01029995 - samples/sec: 762.60 - lr: 0.010000
2023-02-06 08:33:34,331 epoch 17 - iter 117/133 - loss 0.01028484 - samples/sec: 776.27 - lr: 0.010000
2023-02-06 08:33:35,784 epoch 17 - iter 130/133 - loss 0.01027576 - samples/sec: 785.80 - lr: 0.010000
2023-02-06 08:33:36,070 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:36,071 EPOCH 17 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:38,498 Evaluating as a multi-label problem: False
2023-02-06 08:33:38,515 DEV : loss 0.01034807600080967 - f1-score (micro avg) 0.63
2023-02-06 08:33:38,856 BAD EPOCHS (no improvement): 0
2023-02-06 08:33:38,862 saving best model
2023-02-06 08:33:38,939 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:40,462 epoch 18 - iter 13/133 - loss 0.01017348 - samples/sec: 740.64 - lr: 0.010000
2023-02-06 08:33:41,723 epoch 18 - iter 26/133 - loss 0.01019914 - samples/sec: 764.13 - lr: 0.010000
2023-02-06 08:33:43,017 epoch 18 - iter 39/133 - loss 0.01021330 - samples/sec: 737.55 - lr: 0.010000
2023-02-06 08:33:44,471 epoch 18 - iter 52/133 - loss 0.01018504 - samples/sec: 782.18 - lr: 0.010000
2023-02-06 08:33:45,771 epoch 18 - iter 65/133 - loss 0.01017944 - samples/sec: 740.07 - lr: 0.010000
2023-02-06 08:33:47,306 epoch 18 - iter 78/133 - loss 0.01020170 - samples/sec: 734.11 - lr: 0.010000
2023-02-06 08:33:48,590 epoch 18 - iter 91/133 - loss 0.01021375 - samples/sec: 743.50 - lr: 0.010000
2023-02-06 08:33:50,106 epoch 18 - iter 104/133 - loss 0.01019670 - samples/sec: 745.19 - lr: 0.010000
2023-02-06 08:33:51,371 epoch 18 - iter 117/133 - loss 0.01023334 - samples/sec: 762.98 - lr: 0.010000
2023-02-06 08:33:52,871 epoch 18 - iter 130/133 - loss 0.01022335 - samples/sec: 764.73 - lr: 0.010000
2023-02-06 08:33:53,154 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:53,156 EPOCH 18 done: loss 0.0102 - lr 0.010000
2023-02-06 08:33:55,611 Evaluating as a multi-label problem: False
2023-02-06 08:33:55,629 DEV : loss 0.010320308618247509 - f1-score (micro avg) 0.6313
2023-02-06 08:33:55,977 BAD EPOCHS (no improvement): 0
2023-02-06 08:33:55,987 saving best model
2023-02-06 08:33:56,065 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:57,370 epoch 19 - iter 13/133 - loss 0.01029091 - samples/sec: 738.06 - lr: 0.010000
2023-02-06 08:33:58,890 epoch 19 - iter 26/133 - loss 0.01023014 - samples/sec: 750.92 - lr: 0.010000
2023-02-06 08:34:00,150 epoch 19 - iter 39/133 - loss 0.01020864 - samples/sec: 762.09 - lr: 0.010000
2023-02-06 08:34:01,681 epoch 19 - iter 52/133 - loss 0.01024439 - samples/sec: 741.73 - lr: 0.010000
2023-02-06 08:34:02,906 epoch 19 - iter 65/133 - loss 0.01023181 - samples/sec: 790.97 - lr: 0.010000
2023-02-06 08:34:04,433 epoch 19 - iter 78/133 - loss 0.01022412 - samples/sec: 613.31 - lr: 0.010000
2023-02-06 08:34:05,780 epoch 19 - iter 91/133 - loss 0.01019693 - samples/sec: 712.09 - lr: 0.010000
2023-02-06 08:34:07,187 epoch 19 - iter 104/133 - loss 0.01022081 - samples/sec: 673.66 - lr: 0.010000
2023-02-06 08:34:08,668 epoch 19 - iter 117/133 - loss 0.01022890 - samples/sec: 785.83 - lr: 0.010000
2023-02-06 08:34:09,910 epoch 19 - iter 130/133 - loss 0.01020723 - samples/sec: 777.53 - lr: 0.010000
2023-02-06 08:34:10,200 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:10,207 EPOCH 19 done: loss 0.0102 - lr 0.010000
2023-02-06 08:34:12,679 Evaluating as a multi-label problem: False
2023-02-06 08:34:12,700 DEV : loss 0.010296817868947983 - f1-score (micro avg) 0.64
2023-02-06 08:34:13,311 BAD EPOCHS (no improvement): 0
2023-02-06 08:34:13,316 saving best model
2023-02-06 08:34:13,390 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:14,758 epoch 20 - iter 13/133 - loss 0.01021864 - samples/sec: 703.40 - lr: 0.010000
2023-02-06 08:34:16,077 epoch 20 - iter 26/133 - loss 0.01028711 - samples/sec: 725.84 - lr: 0.010000
2023-02-06 08:34:17,634 epoch 20 - iter 39/133 - loss 0.01022971 - samples/sec: 745.04 - lr: 0.010000
2023-02-06 08:34:18,921 epoch 20 - iter 52/133 - loss 0.01026002 - samples/sec: 750.90 - lr: 0.010000
2023-02-06 08:34:20,467 epoch 20 - iter 65/133 - loss 0.01026057 - samples/sec: 602.55 - lr: 0.010000
2023-02-06 08:34:21,753 epoch 20 - iter 78/133 - loss 0.01026928 - samples/sec: 751.33 - lr: 0.010000
2023-02-06 08:34:23,292 epoch 20 - iter 91/133 - loss 0.01025076 - samples/sec: 736.16 - lr: 0.010000
2023-02-06 08:34:24,579 epoch 20 - iter 104/133 - loss 0.01020640 - samples/sec: 746.82 - lr: 0.010000
2023-02-06 08:34:25,909 epoch 20 - iter 117/133 - loss 0.01019171 - samples/sec: 719.60 - lr: 0.010000
2023-02-06 08:34:27,438 epoch 20 - iter 130/133 - loss 0.01017225 - samples/sec: 738.30 - lr: 0.010000
2023-02-06 08:34:27,739 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:27,744 EPOCH 20 done: loss 0.0102 - lr 0.010000
2023-02-06 08:34:30,257 Evaluating as a multi-label problem: False
2023-02-06 08:34:30,274 DEV : loss 0.010265583172440529 - f1-score (micro avg) 0.6413
2023-02-06 08:34:30,654 BAD EPOCHS (no improvement): 0
2023-02-06 08:34:30,660 saving best model
2023-02-06 08:34:30,739 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:32,330 epoch 21 - iter 13/133 - loss 0.01014521 - samples/sec: 710.15 - lr: 0.010000
2023-02-06 08:34:33,625 epoch 21 - iter 26/133 - loss 0.01018544 - samples/sec: 743.43 - lr: 0.010000
2023-02-06 08:34:35,128 epoch 21 - iter 39/133 - loss 0.01014949 - samples/sec: 755.29 - lr: 0.010000
2023-02-06 08:34:36,388 epoch 21 - iter 52/133 - loss 0.01015701 - samples/sec: 758.49 - lr: 0.010000
2023-02-06 08:34:37,625 epoch 21 - iter 65/133 - loss 0.01014343 - samples/sec: 781.03 - lr: 0.010000
2023-02-06 08:34:39,127 epoch 21 - iter 78/133 - loss 0.01011384 - samples/sec: 758.01 - lr: 0.010000
2023-02-06 08:34:40,496 epoch 21 - iter 91/133 - loss 0.01012422 - samples/sec: 690.35 - lr: 0.010000
2023-02-06 08:34:42,023 epoch 21 - iter 104/133 - loss 0.01014283 - samples/sec: 761.00 - lr: 0.010000
2023-02-06 08:34:43,304 epoch 21 - iter 117/133 - loss 0.01013442 - samples/sec: 748.07 - lr: 0.010000
2023-02-06 08:34:44,869 epoch 21 - iter 130/133 - loss 0.01012862 - samples/sec: 730.48 - lr: 0.010000
2023-02-06 08:34:45,169 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:45,175 EPOCH 21 done: loss 0.0101 - lr 0.010000
2023-02-06 08:34:47,720 Evaluating as a multi-label problem: False
2023-02-06 08:34:47,743 DEV : loss 0.010291438549757004 - f1-score (micro avg) 0.6373
2023-02-06 08:34:48,104 BAD EPOCHS (no improvement): 1
2023-02-06 08:34:48,124 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:49,559 epoch 22 - iter 13/133 - loss 0.00996709 - samples/sec: 657.64 - lr: 0.010000
2023-02-06 08:34:51,095 epoch 22 - iter 26/133 - loss 0.01001206 - samples/sec: 739.55 - lr: 0.010000
2023-02-06 08:34:52,347 epoch 22 - iter 39/133 - loss 0.01004049 - samples/sec: 767.48 - lr: 0.010000
2023-02-06 08:34:53,920 epoch 22 - iter 52/133 - loss 0.01005317 - samples/sec: 722.99 - lr: 0.010000
2023-02-06 08:34:55,196 epoch 22 - iter 65/133 - loss 0.01010477 - samples/sec: 747.76 - lr: 0.010000
2023-02-06 08:34:56,737 epoch 22 - iter 78/133 - loss 0.01010079 - samples/sec: 608.24 - lr: 0.010000
2023-02-06 08:34:58,059 epoch 22 - iter 91/133 - loss 0.01013500 - samples/sec: 727.48 - lr: 0.010000
2023-02-06 08:34:59,404 epoch 22 - iter 104/133 - loss 0.01013831 - samples/sec: 712.32 - lr: 0.010000
2023-02-06 08:35:00,950 epoch 22 - iter 117/133 - loss 0.01014236 - samples/sec: 741.47 - lr: 0.010000
2023-02-06 08:35:02,201 epoch 22 - iter 130/133 - loss 0.01013044 - samples/sec: 762.45 - lr: 0.010000
2023-02-06 08:35:02,483 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:02,485 EPOCH 22 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:04,928 Evaluating as a multi-label problem: False
2023-02-06 08:35:04,944 DEV : loss 0.010224188677966595 - f1-score (micro avg) 0.6413
2023-02-06 08:35:05,519 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:05,528 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:06,856 epoch 23 - iter 13/133 - loss 0.01005563 - samples/sec: 720.28 - lr: 0.010000
2023-02-06 08:35:08,375 epoch 23 - iter 26/133 - loss 0.01002448 - samples/sec: 616.23 - lr: 0.010000
2023-02-06 08:35:09,661 epoch 23 - iter 39/133 - loss 0.01015809 - samples/sec: 739.97 - lr: 0.010000
2023-02-06 08:35:10,916 epoch 23 - iter 52/133 - loss 0.01016788 - samples/sec: 764.29 - lr: 0.010000
2023-02-06 08:35:12,458 epoch 23 - iter 65/133 - loss 0.01009484 - samples/sec: 739.26 - lr: 0.010000
2023-02-06 08:35:13,705 epoch 23 - iter 78/133 - loss 0.01008399 - samples/sec: 770.62 - lr: 0.010000
2023-02-06 08:35:15,187 epoch 23 - iter 91/133 - loss 0.01007382 - samples/sec: 769.82 - lr: 0.010000
2023-02-06 08:35:16,466 epoch 23 - iter 104/133 - loss 0.01006859 - samples/sec: 747.87 - lr: 0.010000
2023-02-06 08:35:18,033 epoch 23 - iter 117/133 - loss 0.01007952 - samples/sec: 718.89 - lr: 0.010000
2023-02-06 08:35:19,305 epoch 23 - iter 130/133 - loss 0.01007932 - samples/sec: 752.56 - lr: 0.010000
2023-02-06 08:35:19,591 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:19,593 EPOCH 23 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:22,099 Evaluating as a multi-label problem: False
2023-02-06 08:35:22,116 DEV : loss 0.010190014727413654 - f1-score (micro avg) 0.644
2023-02-06 08:35:22,476 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:22,484 saving best model
2023-02-06 08:35:22,562 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:24,159 epoch 24 - iter 13/133 - loss 0.01033764 - samples/sec: 707.79 - lr: 0.010000
2023-02-06 08:35:25,436 epoch 24 - iter 26/133 - loss 0.01039924 - samples/sec: 753.06 - lr: 0.010000
2023-02-06 08:35:26,953 epoch 24 - iter 39/133 - loss 0.01019226 - samples/sec: 761.33 - lr: 0.010000
2023-02-06 08:35:28,217 epoch 24 - iter 52/133 - loss 0.01010421 - samples/sec: 759.92 - lr: 0.010000
2023-02-06 08:35:29,503 epoch 24 - iter 65/133 - loss 0.01008049 - samples/sec: 751.64 - lr: 0.010000
2023-02-06 08:35:31,044 epoch 24 - iter 78/133 - loss 0.01005312 - samples/sec: 735.12 - lr: 0.010000
2023-02-06 08:35:32,319 epoch 24 - iter 91/133 - loss 0.01005299 - samples/sec: 759.51 - lr: 0.010000
2023-02-06 08:35:33,822 epoch 24 - iter 104/133 - loss 0.01003790 - samples/sec: 760.19 - lr: 0.010000
2023-02-06 08:35:35,097 epoch 24 - iter 117/133 - loss 0.01003322 - samples/sec: 752.83 - lr: 0.010000
2023-02-06 08:35:36,616 epoch 24 - iter 130/133 - loss 0.01004728 - samples/sec: 748.80 - lr: 0.010000
2023-02-06 08:35:36,902 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:36,903 EPOCH 24 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:39,354 Evaluating as a multi-label problem: False
2023-02-06 08:35:39,371 DEV : loss 0.010158772580325603 - f1-score (micro avg) 0.6487
2023-02-06 08:35:39,720 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:39,727 saving best model
2023-02-06 08:35:39,802 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:41,120 epoch 25 - iter 13/133 - loss 0.00981064 - samples/sec: 733.84 - lr: 0.010000
2023-02-06 08:35:42,650 epoch 25 - iter 26/133 - loss 0.00984903 - samples/sec: 745.83 - lr: 0.010000
2023-02-06 08:35:43,929 epoch 25 - iter 39/133 - loss 0.00991121 - samples/sec: 755.02 - lr: 0.010000
2023-02-06 08:35:45,467 epoch 25 - iter 52/133 - loss 0.01000175 - samples/sec: 740.89 - lr: 0.010000
2023-02-06 08:35:46,750 epoch 25 - iter 65/133 - loss 0.01000978 - samples/sec: 746.54 - lr: 0.010000
2023-02-06 08:35:48,252 epoch 25 - iter 78/133 - loss 0.01001222 - samples/sec: 770.84 - lr: 0.010000
2023-02-06 08:35:49,515 epoch 25 - iter 91/133 - loss 0.01000999 - samples/sec: 759.97 - lr: 0.010000
2023-02-06 08:35:51,036 epoch 25 - iter 104/133 - loss 0.00999015 - samples/sec: 616.30 - lr: 0.010000
2023-02-06 08:35:52,290 epoch 25 - iter 117/133 - loss 0.00998576 - samples/sec: 770.57 - lr: 0.010000
2023-02-06 08:35:53,576 epoch 25 - iter 130/133 - loss 0.00998035 - samples/sec: 745.63 - lr: 0.010000
2023-02-06 08:35:54,094 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:54,096 EPOCH 25 done: loss 0.0100 - lr 0.010000
2023-02-06 08:35:56,283 Evaluating as a multi-label problem: False
2023-02-06 08:35:56,301 DEV : loss 0.010137598030269146 - f1-score (micro avg) 0.6507
2023-02-06 08:35:56,866 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:56,874 saving best model
2023-02-06 08:35:56,952 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:58,254 epoch 26 - iter 13/133 - loss 0.00981231 - samples/sec: 744.59 - lr: 0.010000
2023-02-06 08:35:59,716 epoch 26 - iter 26/133 - loss 0.00985499 - samples/sec: 779.93 - lr: 0.010000
2023-02-06 08:36:00,934 epoch 26 - iter 39/133 - loss 0.00986997 - samples/sec: 794.56 - lr: 0.010000
2023-02-06 08:36:02,450 epoch 26 - iter 52/133 - loss 0.00985057 - samples/sec: 750.90 - lr: 0.010000
2023-02-06 08:36:03,705 epoch 26 - iter 65/133 - loss 0.00991802 - samples/sec: 770.23 - lr: 0.010000
2023-02-06 08:36:04,983 epoch 26 - iter 78/133 - loss 0.00995249 - samples/sec: 752.52 - lr: 0.010000
2023-02-06 08:36:06,610 epoch 26 - iter 91/133 - loss 0.00994670 - samples/sec: 695.85 - lr: 0.010000
2023-02-06 08:36:07,854 epoch 26 - iter 104/133 - loss 0.00992897 - samples/sec: 766.60 - lr: 0.010000
2023-02-06 08:36:09,332 epoch 26 - iter 117/133 - loss 0.00995839 - samples/sec: 771.15 - lr: 0.010000
2023-02-06 08:36:10,585 epoch 26 - iter 130/133 - loss 0.00997863 - samples/sec: 763.77 - lr: 0.010000
2023-02-06 08:36:10,866 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:10,871 EPOCH 26 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:13,272 Evaluating as a multi-label problem: False
2023-02-06 08:36:13,289 DEV : loss 0.010154918767511845 - f1-score (micro avg) 0.6453
2023-02-06 08:36:13,875 BAD EPOCHS (no improvement): 1
2023-02-06 08:36:13,882 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:15,140 epoch 27 - iter 13/133 - loss 0.00982359 - samples/sec: 758.36 - lr: 0.010000
2023-02-06 08:36:16,393 epoch 27 - iter 26/133 - loss 0.00995263 - samples/sec: 765.88 - lr: 0.010000
2023-02-06 08:36:17,990 epoch 27 - iter 39/133 - loss 0.00994264 - samples/sec: 724.70 - lr: 0.010000
2023-02-06 08:36:19,734 epoch 27 - iter 52/133 - loss 0.00990056 - samples/sec: 584.51 - lr: 0.010000
2023-02-06 08:36:21,871 epoch 27 - iter 65/133 - loss 0.00989842 - samples/sec: 547.01 - lr: 0.010000
2023-02-06 08:36:23,233 epoch 27 - iter 78/133 - loss 0.00990904 - samples/sec: 698.41 - lr: 0.010000
2023-02-06 08:36:24,750 epoch 27 - iter 91/133 - loss 0.00997472 - samples/sec: 741.54 - lr: 0.010000
2023-02-06 08:36:25,989 epoch 27 - iter 104/133 - loss 0.00996257 - samples/sec: 774.43 - lr: 0.010000
2023-02-06 08:36:27,217 epoch 27 - iter 117/133 - loss 0.00995437 - samples/sec: 781.46 - lr: 0.010000
2023-02-06 08:36:28,665 epoch 27 - iter 130/133 - loss 0.00995591 - samples/sec: 787.10 - lr: 0.010000
2023-02-06 08:36:28,936 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:28,941 EPOCH 27 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:31,339 Evaluating as a multi-label problem: False
2023-02-06 08:36:31,357 DEV : loss 0.010085121728479862 - f1-score (micro avg) 0.6567
2023-02-06 08:36:31,722 BAD EPOCHS (no improvement): 0
2023-02-06 08:36:31,732 saving best model
2023-02-06 08:36:31,827 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:33,404 epoch 28 - iter 13/133 - loss 0.01020064 - samples/sec: 708.07 - lr: 0.010000
2023-02-06 08:36:34,623 epoch 28 - iter 26/133 - loss 0.01013967 - samples/sec: 786.34 - lr: 0.010000
2023-02-06 08:36:36,131 epoch 28 - iter 39/133 - loss 0.01003563 - samples/sec: 758.40 - lr: 0.010000
2023-02-06 08:36:37,442 epoch 28 - iter 52/133 - loss 0.00998388 - samples/sec: 730.28 - lr: 0.010000
2023-02-06 08:36:38,722 epoch 28 - iter 65/133 - loss 0.00999888 - samples/sec: 748.06 - lr: 0.010000
2023-02-06 08:36:40,168 epoch 28 - iter 78/133 - loss 0.01003122 - samples/sec: 786.57 - lr: 0.010000
2023-02-06 08:36:41,456 epoch 28 - iter 91/133 - loss 0.01000777 - samples/sec: 744.48 - lr: 0.010000
2023-02-06 08:36:42,925 epoch 28 - iter 104/133 - loss 0.00998209 - samples/sec: 783.40 - lr: 0.010000
2023-02-06 08:36:44,160 epoch 28 - iter 117/133 - loss 0.00999413 - samples/sec: 777.17 - lr: 0.010000
2023-02-06 08:36:45,652 epoch 28 - iter 130/133 - loss 0.00996400 - samples/sec: 627.73 - lr: 0.010000
2023-02-06 08:36:45,936 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:45,937 EPOCH 28 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:48,370 Evaluating as a multi-label problem: False
2023-02-06 08:36:48,390 DEV : loss 0.010063917376101017 - f1-score (micro avg) 0.6567
2023-02-06 08:36:48,774 BAD EPOCHS (no improvement): 0
2023-02-06 08:36:48,783 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:50,112 epoch 29 - iter 13/133 - loss 0.01007614 - samples/sec: 715.39 - lr: 0.010000
2023-02-06 08:36:51,579 epoch 29 - iter 26/133 - loss 0.00997458 - samples/sec: 766.42 - lr: 0.010000
2023-02-06 08:36:52,814 epoch 29 - iter 39/133 - loss 0.00989408 - samples/sec: 781.38 - lr: 0.010000
2023-02-06 08:36:54,264 epoch 29 - iter 52/133 - loss 0.00989758 - samples/sec: 784.84 - lr: 0.010000
2023-02-06 08:36:55,532 epoch 29 - iter 65/133 - loss 0.00991688 - samples/sec: 756.52 - lr: 0.010000
2023-02-06 08:36:57,026 epoch 29 - iter 78/133 - loss 0.00991818 - samples/sec: 758.17 - lr: 0.010000
2023-02-06 08:36:58,307 epoch 29 - iter 91/133 - loss 0.00989315 - samples/sec: 756.41 - lr: 0.010000
2023-02-06 08:36:59,562 epoch 29 - iter 104/133 - loss 0.00987888 - samples/sec: 767.41 - lr: 0.010000
2023-02-06 08:37:01,023 epoch 29 - iter 117/133 - loss 0.00989864 - samples/sec: 642.50 - lr: 0.010000
2023-02-06 08:37:02,264 epoch 29 - iter 130/133 - loss 0.00992279 - samples/sec: 772.60 - lr: 0.010000
2023-02-06 08:37:02,549 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:02,550 EPOCH 29 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:05,071 Evaluating as a multi-label problem: False
2023-02-06 08:37:05,088 DEV : loss 0.010063448920845985 - f1-score (micro avg) 0.6533
2023-02-06 08:37:05,677 BAD EPOCHS (no improvement): 1
2023-02-06 08:37:05,684 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:06,997 epoch 30 - iter 13/133 - loss 0.01003949 - samples/sec: 732.41 - lr: 0.010000
2023-02-06 08:37:08,331 epoch 30 - iter 26/133 - loss 0.01015033 - samples/sec: 719.55 - lr: 0.010000
2023-02-06 08:37:09,806 epoch 30 - iter 39/133 - loss 0.01011311 - samples/sec: 636.91 - lr: 0.010000
2023-02-06 08:37:11,050 epoch 30 - iter 52/133 - loss 0.00997797 - samples/sec: 769.41 - lr: 0.010000
2023-02-06 08:37:12,552 epoch 30 - iter 65/133 - loss 0.00995678 - samples/sec: 763.55 - lr: 0.010000
2023-02-06 08:37:13,798 epoch 30 - iter 78/133 - loss 0.00991438 - samples/sec: 771.97 - lr: 0.010000
2023-02-06 08:37:15,297 epoch 30 - iter 91/133 - loss 0.00988681 - samples/sec: 753.64 - lr: 0.010000
2023-02-06 08:37:16,543 epoch 30 - iter 104/133 - loss 0.00986966 - samples/sec: 770.92 - lr: 0.010000
2023-02-06 08:37:17,762 epoch 30 - iter 117/133 - loss 0.00987746 - samples/sec: 785.58 - lr: 0.010000
2023-02-06 08:37:19,280 epoch 30 - iter 130/133 - loss 0.00989263 - samples/sec: 738.22 - lr: 0.010000
2023-02-06 08:37:19,569 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:19,571 EPOCH 30 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:22,147 Evaluating as a multi-label problem: False
2023-02-06 08:37:22,165 DEV : loss 0.010032457299530506 - f1-score (micro avg) 0.6627
2023-02-06 08:37:22,507 BAD EPOCHS (no improvement): 0
2023-02-06 08:37:22,515 saving best model
2023-02-06 08:37:22,593 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:24,034 epoch 31 - iter 13/133 - loss 0.00986991 - samples/sec: 795.89 - lr: 0.010000
2023-02-06 08:37:25,350 epoch 31 - iter 26/133 - loss 0.00980032 - samples/sec: 722.12 - lr: 0.010000
2023-02-06 08:37:26,804 epoch 31 - iter 39/133 - loss 0.00981070 - samples/sec: 788.11 - lr: 0.010000
2023-02-06 08:37:28,032 epoch 31 - iter 52/133 - loss 0.00978956 - samples/sec: 782.72 - lr: 0.010000
2023-02-06 08:37:29,262 epoch 31 - iter 65/133 - loss 0.00985205 - samples/sec: 776.53 - lr: 0.010000
2023-02-06 08:37:30,801 epoch 31 - iter 78/133 - loss 0.00986377 - samples/sec: 734.35 - lr: 0.010000
2023-02-06 08:37:32,105 epoch 31 - iter 91/133 - loss 0.00986039 - samples/sec: 737.43 - lr: 0.010000
2023-02-06 08:37:33,586 epoch 31 - iter 104/133 - loss 0.00986586 - samples/sec: 766.82 - lr: 0.010000
2023-02-06 08:37:34,867 epoch 31 - iter 117/133 - loss 0.00988794 - samples/sec: 748.41 - lr: 0.010000
2023-02-06 08:37:36,405 epoch 31 - iter 130/133 - loss 0.00986537 - samples/sec: 732.70 - lr: 0.010000
2023-02-06 08:37:36,707 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:36,713 EPOCH 31 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:39,148 Evaluating as a multi-label problem: False
2023-02-06 08:37:39,165 DEV : loss 0.010030188597738743 - f1-score (micro avg) 0.6507
2023-02-06 08:37:39,503 BAD EPOCHS (no improvement): 1
2023-02-06 08:37:39,509 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:40,819 epoch 32 - iter 13/133 - loss 0.00972815 - samples/sec: 729.87 - lr: 0.010000
2023-02-06 08:37:42,293 epoch 32 - iter 26/133 - loss 0.00993442 - samples/sec: 767.42 - lr: 0.010000
2023-02-06 08:37:43,527 epoch 32 - iter 39/133 - loss 0.00989563 - samples/sec: 777.81 - lr: 0.010000
2023-02-06 08:37:45,030 epoch 32 - iter 52/133 - loss 0.00987169 - samples/sec: 762.50 - lr: 0.010000
2023-02-06 08:37:46,312 epoch 32 - iter 65/133 - loss 0.00982198 - samples/sec: 744.56 - lr: 0.010000
2023-02-06 08:37:47,772 epoch 32 - iter 78/133 - loss 0.00984166 - samples/sec: 787.72 - lr: 0.010000
2023-02-06 08:37:49,052 epoch 32 - iter 91/133 - loss 0.00985835 - samples/sec: 753.47 - lr: 0.010000
2023-02-06 08:37:50,603 epoch 32 - iter 104/133 - loss 0.00985180 - samples/sec: 729.35 - lr: 0.010000
2023-02-06 08:37:51,833 epoch 32 - iter 117/133 - loss 0.00984472 - samples/sec: 780.52 - lr: 0.010000
2023-02-06 08:37:53,083 epoch 32 - iter 130/133 - loss 0.00982573 - samples/sec: 764.01 - lr: 0.010000
2023-02-06 08:37:53,402 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:53,407 EPOCH 32 done: loss 0.0098 - lr 0.010000
2023-02-06 08:37:55,865 Evaluating as a multi-label problem: False
2023-02-06 08:37:55,882 DEV : loss 0.009983059018850327 - f1-score (micro avg) 0.662
2023-02-06 08:37:56,448 BAD EPOCHS (no improvement): 2
2023-02-06 08:37:56,456 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:57,753 epoch 33 - iter 13/133 - loss 0.00986220 - samples/sec: 736.25 - lr: 0.010000
2023-02-06 08:37:59,189 epoch 33 - iter 26/133 - loss 0.00975062 - samples/sec: 802.53 - lr: 0.010000
2023-02-06 08:38:00,474 epoch 33 - iter 39/133 - loss 0.00986705 - samples/sec: 745.66 - lr: 0.010000
2023-02-06 08:38:01,738 epoch 33 - iter 52/133 - loss 0.00984679 - samples/sec: 754.60 - lr: 0.010000
2023-02-06 08:38:03,179 epoch 33 - iter 65/133 - loss 0.00978551 - samples/sec: 794.68 - lr: 0.010000
2023-02-06 08:38:04,429 epoch 33 - iter 78/133 - loss 0.00975048 - samples/sec: 765.26 - lr: 0.010000
2023-02-06 08:38:05,913 epoch 33 - iter 91/133 - loss 0.00976211 - samples/sec: 634.13 - lr: 0.010000
2023-02-06 08:38:07,200 epoch 33 - iter 104/133 - loss 0.00978878 - samples/sec: 740.16 - lr: 0.010000
2023-02-06 08:38:08,709 epoch 33 - iter 117/133 - loss 0.00982863 - samples/sec: 747.73 - lr: 0.010000
2023-02-06 08:38:10,026 epoch 33 - iter 130/133 - loss 0.00987417 - samples/sec: 722.74 - lr: 0.010000
2023-02-06 08:38:10,302 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:10,303 EPOCH 33 done: loss 0.0099 - lr 0.010000
2023-02-06 08:38:12,844 Evaluating as a multi-label problem: False
2023-02-06 08:38:12,862 DEV : loss 0.009982590563595295 - f1-score (micro avg) 0.66
2023-02-06 08:38:13,436 BAD EPOCHS (no improvement): 3
2023-02-06 08:38:13,443 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:14,816 epoch 34 - iter 13/133 - loss 0.00992892 - samples/sec: 690.92 - lr: 0.010000
2023-02-06 08:38:16,115 epoch 34 - iter 26/133 - loss 0.00987621 - samples/sec: 736.73 - lr: 0.010000
2023-02-06 08:38:17,696 epoch 34 - iter 39/133 - loss 0.00987597 - samples/sec: 734.20 - lr: 0.010000
2023-02-06 08:38:18,994 epoch 34 - iter 52/133 - loss 0.00991974 - samples/sec: 737.16 - lr: 0.010000
2023-02-06 08:38:20,513 epoch 34 - iter 65/133 - loss 0.00990955 - samples/sec: 619.03 - lr: 0.010000
2023-02-06 08:38:21,810 epoch 34 - iter 78/133 - loss 0.00985254 - samples/sec: 739.38 - lr: 0.010000
2023-02-06 08:38:23,273 epoch 34 - iter 91/133 - loss 0.00982011 - samples/sec: 779.25 - lr: 0.010000
2023-02-06 08:38:24,511 epoch 34 - iter 104/133 - loss 0.00980783 - samples/sec: 773.71 - lr: 0.010000
2023-02-06 08:38:25,739 epoch 34 - iter 117/133 - loss 0.00976338 - samples/sec: 780.95 - lr: 0.010000
2023-02-06 08:38:27,199 epoch 34 - iter 130/133 - loss 0.00978109 - samples/sec: 777.03 - lr: 0.010000
2023-02-06 08:38:27,468 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:27,472 EPOCH 34 done: loss 0.0098 - lr 0.010000
2023-02-06 08:38:29,920 Evaluating as a multi-label problem: False
2023-02-06 08:38:29,937 DEV : loss 0.009954135864973068 - f1-score (micro avg) 0.6647
2023-02-06 08:38:30,291 BAD EPOCHS (no improvement): 0
2023-02-06 08:38:30,298 saving best model
2023-02-06 08:38:30,373 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:31,950 epoch 35 - iter 13/133 - loss 0.00960910 - samples/sec: 708.10 - lr: 0.010000
2023-02-06 08:38:33,281 epoch 35 - iter 26/133 - loss 0.00965913 - samples/sec: 722.62 - lr: 0.010000
2023-02-06 08:38:34,761 epoch 35 - iter 39/133 - loss 0.00961002 - samples/sec: 636.49 - lr: 0.010000
2023-02-06 08:38:36,130 epoch 35 - iter 52/133 - loss 0.00968180 - samples/sec: 698.70 - lr: 0.010000
2023-02-06 08:38:37,349 epoch 35 - iter 65/133 - loss 0.00970834 - samples/sec: 786.80 - lr: 0.010000
2023-02-06 08:38:38,815 epoch 35 - iter 78/133 - loss 0.00976811 - samples/sec: 770.86 - lr: 0.010000
2023-02-06 08:38:40,015 epoch 35 - iter 91/133 - loss 0.00977029 - samples/sec: 805.65 - lr: 0.010000
2023-02-06 08:38:41,480 epoch 35 - iter 104/133 - loss 0.00976745 - samples/sec: 773.86 - lr: 0.010000
2023-02-06 08:38:42,701 epoch 35 - iter 117/133 - loss 0.00977891 - samples/sec: 787.95 - lr: 0.010000
2023-02-06 08:38:44,189 epoch 35 - iter 130/133 - loss 0.00974154 - samples/sec: 759.68 - lr: 0.010000
2023-02-06 08:38:44,483 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:44,489 EPOCH 35 done: loss 0.0098 - lr 0.010000
2023-02-06 08:38:46,913 Evaluating as a multi-label problem: False
2023-02-06 08:38:46,930 DEV : loss 0.009962853975594044 - f1-score (micro avg) 0.658
2023-02-06 08:38:47,267 BAD EPOCHS (no improvement): 1
2023-02-06 08:38:47,361 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:47,365 loading file /content/drive/MyDrive/Colab Notebooks/models/flair-sentiment-classifier/best-model.pt
2023-02-06 08:38:48,126 Evaluating as a multi-label problem: False
2023-02-06 08:38:48,139 0.6462 0.6462 0.6462 0.6462
2023-02-06 08:38:48,144
Results:
- F-score (micro) 0.6462
- F-score (macro) 0.6426
- Accuracy 0.6462
By class:
precision recall f1-score support
1 0.6291 0.7363 0.6785 182
0 0.6712 0.5537 0.6068 177
accuracy 0.6462 359
macro avg 0.6502 0.6450 0.6426 359
weighted avg 0.6499 0.6462 0.6431 359
2023-02-06 08:38:48,150 ----------------------------------------------------------------------------------------------------
|