File size: 58,128 Bytes
6cf89af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
2023-02-06 08:28:45,031 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,036 Model: "TextClassifier(
  (decoder): Linear(in_features=512, out_features=3, bias=True)
  (dropout): Dropout(p=0.0, inplace=False)
  (locked_dropout): LockedDropout(p=0.0)
  (word_dropout): WordDropout(p=0.0)
  (loss_function): CrossEntropyLoss()
  (document_embeddings): DocumentLSTMEmbeddings(
    (embeddings): StackedEmbeddings(
      (list_embedding_0): FlairEmbeddings(
        (lm): LanguageModel(
          (drop): Dropout(p=0.25, inplace=False)
          (encoder): Embedding(275, 100)
          (rnn): LSTM(100, 1024)
          (decoder): Linear(in_features=1024, out_features=275, bias=True)
        )
      )
    )
    (word_reprojection_map): Linear(in_features=1024, out_features=256, bias=True)
    (rnn): GRU(256, 512)
    (dropout): Dropout(p=0.5, inplace=False)
  )
  (weights): None
  (weight_tensor) None
)"
2023-02-06 08:28:45,039 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,042 Corpus: "Corpus: 8500 train + 1500 dev + 359 test sentences"
2023-02-06 08:28:45,045 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,048 Parameters:
2023-02-06 08:28:45,051  - learning_rate: "0.010000"
2023-02-06 08:28:45,052  - mini_batch_size: "64"
2023-02-06 08:28:45,056  - patience: "3"
2023-02-06 08:28:45,057  - anneal_factor: "0.5"
2023-02-06 08:28:45,061  - max_epochs: "35"
2023-02-06 08:28:45,063  - shuffle: "True"
2023-02-06 08:28:45,069  - train_with_dev: "False"
2023-02-06 08:28:45,071  - batch_growth_annealing: "False"
2023-02-06 08:28:45,075 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,078 Model training base path: "/content/drive/MyDrive/Colab Notebooks/models/flair-sentiment-classifier"
2023-02-06 08:28:45,081 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,083 Device: cuda:0
2023-02-06 08:28:45,085 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:45,089 Embeddings storage mode: gpu
2023-02-06 08:28:45,091 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:46,882 epoch 1 - iter 13/133 - loss 0.01562834 - samples/sec: 514.51 - lr: 0.010000
2023-02-06 08:28:48,397 epoch 1 - iter 26/133 - loss 0.01481466 - samples/sec: 748.73 - lr: 0.010000
2023-02-06 08:28:49,638 epoch 1 - iter 39/133 - loss 0.01423043 - samples/sec: 772.85 - lr: 0.010000
2023-02-06 08:28:51,189 epoch 1 - iter 52/133 - loss 0.01381341 - samples/sec: 600.83 - lr: 0.010000
2023-02-06 08:28:52,402 epoch 1 - iter 65/133 - loss 0.01349711 - samples/sec: 796.47 - lr: 0.010000
2023-02-06 08:28:53,877 epoch 1 - iter 78/133 - loss 0.01323276 - samples/sec: 765.73 - lr: 0.010000
2023-02-06 08:28:55,144 epoch 1 - iter 91/133 - loss 0.01301969 - samples/sec: 759.35 - lr: 0.010000
2023-02-06 08:28:56,401 epoch 1 - iter 104/133 - loss 0.01283645 - samples/sec: 765.85 - lr: 0.010000
2023-02-06 08:28:57,895 epoch 1 - iter 117/133 - loss 0.01267868 - samples/sec: 760.35 - lr: 0.010000
2023-02-06 08:28:59,155 epoch 1 - iter 130/133 - loss 0.01254156 - samples/sec: 766.70 - lr: 0.010000
2023-02-06 08:28:59,435 ----------------------------------------------------------------------------------------------------
2023-02-06 08:28:59,440 EPOCH 1 done: loss 0.0125 - lr 0.010000
2023-02-06 08:29:02,345 Evaluating as a multi-label problem: False
2023-02-06 08:29:02,360 DEV : loss 0.01149754598736763 - f1-score (micro avg)  0.5393
2023-02-06 08:29:02,938 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:02,944 saving best model
2023-02-06 08:29:03,019 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:04,350 epoch 2 - iter 13/133 - loss 0.01134125 - samples/sec: 713.12 - lr: 0.010000
2023-02-06 08:29:05,867 epoch 2 - iter 26/133 - loss 0.01133783 - samples/sec: 745.31 - lr: 0.010000
2023-02-06 08:29:07,096 epoch 2 - iter 39/133 - loss 0.01130036 - samples/sec: 785.18 - lr: 0.010000
2023-02-06 08:29:08,398 epoch 2 - iter 52/133 - loss 0.01126930 - samples/sec: 739.05 - lr: 0.010000
2023-02-06 08:29:10,210 epoch 2 - iter 65/133 - loss 0.01123679 - samples/sec: 611.49 - lr: 0.010000
2023-02-06 08:29:12,013 epoch 2 - iter 78/133 - loss 0.01119918 - samples/sec: 563.65 - lr: 0.010000
2023-02-06 08:29:13,567 epoch 2 - iter 91/133 - loss 0.01119660 - samples/sec: 722.13 - lr: 0.010000
2023-02-06 08:29:14,863 epoch 2 - iter 104/133 - loss 0.01118887 - samples/sec: 739.97 - lr: 0.010000
2023-02-06 08:29:16,413 epoch 2 - iter 117/133 - loss 0.01117338 - samples/sec: 736.63 - lr: 0.010000
2023-02-06 08:29:17,679 epoch 2 - iter 130/133 - loss 0.01115977 - samples/sec: 754.47 - lr: 0.010000
2023-02-06 08:29:17,964 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:17,967 EPOCH 2 done: loss 0.0112 - lr 0.010000
2023-02-06 08:29:20,384 Evaluating as a multi-label problem: False
2023-02-06 08:29:20,400 DEV : loss 0.011094754561781883 - f1-score (micro avg)  0.586
2023-02-06 08:29:20,760 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:20,767 saving best model
2023-02-06 08:29:20,836 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:22,455 epoch 3 - iter 13/133 - loss 0.01100920 - samples/sec: 577.11 - lr: 0.010000
2023-02-06 08:29:23,739 epoch 3 - iter 26/133 - loss 0.01100166 - samples/sec: 748.26 - lr: 0.010000
2023-02-06 08:29:25,256 epoch 3 - iter 39/133 - loss 0.01099206 - samples/sec: 614.87 - lr: 0.010000
2023-02-06 08:29:26,543 epoch 3 - iter 52/133 - loss 0.01096206 - samples/sec: 747.35 - lr: 0.010000
2023-02-06 08:29:28,045 epoch 3 - iter 65/133 - loss 0.01093502 - samples/sec: 756.93 - lr: 0.010000
2023-02-06 08:29:29,300 epoch 3 - iter 78/133 - loss 0.01092986 - samples/sec: 767.76 - lr: 0.010000
2023-02-06 08:29:30,899 epoch 3 - iter 91/133 - loss 0.01094036 - samples/sec: 700.02 - lr: 0.010000
2023-02-06 08:29:32,167 epoch 3 - iter 104/133 - loss 0.01093898 - samples/sec: 759.88 - lr: 0.010000
2023-02-06 08:29:33,482 epoch 3 - iter 117/133 - loss 0.01092654 - samples/sec: 724.74 - lr: 0.010000
2023-02-06 08:29:34,996 epoch 3 - iter 130/133 - loss 0.01091851 - samples/sec: 747.17 - lr: 0.010000
2023-02-06 08:29:35,285 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:35,288 EPOCH 3 done: loss 0.0109 - lr 0.010000
2023-02-06 08:29:37,771 Evaluating as a multi-label problem: False
2023-02-06 08:29:37,787 DEV : loss 0.010945815593004227 - f1-score (micro avg)  0.5833
2023-02-06 08:29:38,166 BAD EPOCHS (no improvement): 1
2023-02-06 08:29:38,171 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:39,771 epoch 4 - iter 13/133 - loss 0.01088269 - samples/sec: 703.41 - lr: 0.010000
2023-02-06 08:29:41,093 epoch 4 - iter 26/133 - loss 0.01079631 - samples/sec: 727.27 - lr: 0.010000
2023-02-06 08:29:42,388 epoch 4 - iter 39/133 - loss 0.01080397 - samples/sec: 731.61 - lr: 0.010000
2023-02-06 08:29:43,901 epoch 4 - iter 52/133 - loss 0.01079299 - samples/sec: 748.17 - lr: 0.010000
2023-02-06 08:29:45,173 epoch 4 - iter 65/133 - loss 0.01080453 - samples/sec: 756.93 - lr: 0.010000
2023-02-06 08:29:46,704 epoch 4 - iter 78/133 - loss 0.01078781 - samples/sec: 742.45 - lr: 0.010000
2023-02-06 08:29:48,004 epoch 4 - iter 91/133 - loss 0.01077505 - samples/sec: 739.13 - lr: 0.010000
2023-02-06 08:29:49,566 epoch 4 - iter 104/133 - loss 0.01077253 - samples/sec: 719.85 - lr: 0.010000
2023-02-06 08:29:50,799 epoch 4 - iter 117/133 - loss 0.01077099 - samples/sec: 782.87 - lr: 0.010000
2023-02-06 08:29:52,309 epoch 4 - iter 130/133 - loss 0.01079835 - samples/sec: 751.86 - lr: 0.010000
2023-02-06 08:29:52,598 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:52,600 EPOCH 4 done: loss 0.0108 - lr 0.010000
2023-02-06 08:29:54,806 Evaluating as a multi-label problem: False
2023-02-06 08:29:54,823 DEV : loss 0.010844088159501553 - f1-score (micro avg)  0.5867
2023-02-06 08:29:55,416 BAD EPOCHS (no improvement): 0
2023-02-06 08:29:55,422 saving best model
2023-02-06 08:29:55,494 ----------------------------------------------------------------------------------------------------
2023-02-06 08:29:56,823 epoch 5 - iter 13/133 - loss 0.01067723 - samples/sec: 718.01 - lr: 0.010000
2023-02-06 08:29:58,344 epoch 5 - iter 26/133 - loss 0.01059902 - samples/sec: 743.92 - lr: 0.010000
2023-02-06 08:29:59,632 epoch 5 - iter 39/133 - loss 0.01065991 - samples/sec: 752.37 - lr: 0.010000
2023-02-06 08:30:01,148 epoch 5 - iter 52/133 - loss 0.01066396 - samples/sec: 742.67 - lr: 0.010000
2023-02-06 08:30:02,462 epoch 5 - iter 65/133 - loss 0.01067246 - samples/sec: 721.77 - lr: 0.010000
2023-02-06 08:30:03,991 epoch 5 - iter 78/133 - loss 0.01067908 - samples/sec: 764.43 - lr: 0.010000
2023-02-06 08:30:05,279 epoch 5 - iter 91/133 - loss 0.01070105 - samples/sec: 746.56 - lr: 0.010000
2023-02-06 08:30:06,504 epoch 5 - iter 104/133 - loss 0.01071328 - samples/sec: 788.19 - lr: 0.010000
2023-02-06 08:30:07,981 epoch 5 - iter 117/133 - loss 0.01069141 - samples/sec: 768.06 - lr: 0.010000
2023-02-06 08:30:09,278 epoch 5 - iter 130/133 - loss 0.01069258 - samples/sec: 736.98 - lr: 0.010000
2023-02-06 08:30:09,584 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:09,591 EPOCH 5 done: loss 0.0107 - lr 0.010000
2023-02-06 08:30:12,079 Evaluating as a multi-label problem: False
2023-02-06 08:30:12,096 DEV : loss 0.010764073580503464 - f1-score (micro avg)  0.59
2023-02-06 08:30:12,666 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:12,684 saving best model
2023-02-06 08:30:12,758 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:14,153 epoch 6 - iter 13/133 - loss 0.01071924 - samples/sec: 682.06 - lr: 0.010000
2023-02-06 08:30:15,468 epoch 6 - iter 26/133 - loss 0.01071274 - samples/sec: 726.60 - lr: 0.010000
2023-02-06 08:30:16,995 epoch 6 - iter 39/133 - loss 0.01072073 - samples/sec: 745.06 - lr: 0.010000
2023-02-06 08:30:18,256 epoch 6 - iter 52/133 - loss 0.01069609 - samples/sec: 766.36 - lr: 0.010000
2023-02-06 08:30:19,760 epoch 6 - iter 65/133 - loss 0.01067637 - samples/sec: 621.63 - lr: 0.010000
2023-02-06 08:30:21,150 epoch 6 - iter 78/133 - loss 0.01069997 - samples/sec: 698.03 - lr: 0.010000
2023-02-06 08:30:22,666 epoch 6 - iter 91/133 - loss 0.01067124 - samples/sec: 747.15 - lr: 0.010000
2023-02-06 08:30:23,937 epoch 6 - iter 104/133 - loss 0.01065074 - samples/sec: 756.77 - lr: 0.010000
2023-02-06 08:30:25,196 epoch 6 - iter 117/133 - loss 0.01065426 - samples/sec: 759.07 - lr: 0.010000
2023-02-06 08:30:26,726 epoch 6 - iter 130/133 - loss 0.01065274 - samples/sec: 739.37 - lr: 0.010000
2023-02-06 08:30:27,011 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:27,016 EPOCH 6 done: loss 0.0107 - lr 0.010000
2023-02-06 08:30:29,488 Evaluating as a multi-label problem: False
2023-02-06 08:30:29,504 DEV : loss 0.010709869675338268 - f1-score (micro avg)  0.5953
2023-02-06 08:30:29,884 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:29,891 saving best model
2023-02-06 08:30:29,962 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:31,568 epoch 7 - iter 13/133 - loss 0.01074821 - samples/sec: 588.47 - lr: 0.010000
2023-02-06 08:30:32,838 epoch 7 - iter 26/133 - loss 0.01067320 - samples/sec: 752.01 - lr: 0.010000
2023-02-06 08:30:34,326 epoch 7 - iter 39/133 - loss 0.01067867 - samples/sec: 764.30 - lr: 0.010000
2023-02-06 08:30:35,675 epoch 7 - iter 52/133 - loss 0.01066511 - samples/sec: 715.33 - lr: 0.010000
2023-02-06 08:30:37,160 epoch 7 - iter 65/133 - loss 0.01066500 - samples/sec: 774.66 - lr: 0.010000
2023-02-06 08:30:38,384 epoch 7 - iter 78/133 - loss 0.01064703 - samples/sec: 786.21 - lr: 0.010000
2023-02-06 08:30:39,656 epoch 7 - iter 91/133 - loss 0.01064059 - samples/sec: 752.36 - lr: 0.010000
2023-02-06 08:30:41,183 epoch 7 - iter 104/133 - loss 0.01064299 - samples/sec: 741.82 - lr: 0.010000
2023-02-06 08:30:42,411 epoch 7 - iter 117/133 - loss 0.01063663 - samples/sec: 782.15 - lr: 0.010000
2023-02-06 08:30:43,918 epoch 7 - iter 130/133 - loss 0.01062067 - samples/sec: 746.86 - lr: 0.010000
2023-02-06 08:30:44,207 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:44,212 EPOCH 7 done: loss 0.0106 - lr 0.010000
2023-02-06 08:30:46,609 Evaluating as a multi-label problem: False
2023-02-06 08:30:46,625 DEV : loss 0.010663843713700771 - f1-score (micro avg)  0.604
2023-02-06 08:30:46,984 BAD EPOCHS (no improvement): 0
2023-02-06 08:30:46,991 saving best model
2023-02-06 08:30:47,072 ----------------------------------------------------------------------------------------------------
2023-02-06 08:30:48,638 epoch 8 - iter 13/133 - loss 0.01043837 - samples/sec: 601.87 - lr: 0.010000
2023-02-06 08:30:49,893 epoch 8 - iter 26/133 - loss 0.01051882 - samples/sec: 760.45 - lr: 0.010000
2023-02-06 08:30:51,166 epoch 8 - iter 39/133 - loss 0.01054135 - samples/sec: 761.95 - lr: 0.010000
2023-02-06 08:30:52,624 epoch 8 - iter 52/133 - loss 0.01056330 - samples/sec: 784.40 - lr: 0.010000
2023-02-06 08:30:53,864 epoch 8 - iter 65/133 - loss 0.01058674 - samples/sec: 788.25 - lr: 0.010000
2023-02-06 08:30:55,348 epoch 8 - iter 78/133 - loss 0.01057453 - samples/sec: 632.25 - lr: 0.010000
2023-02-06 08:30:56,643 epoch 8 - iter 91/133 - loss 0.01056818 - samples/sec: 743.01 - lr: 0.010000
2023-02-06 08:30:58,165 epoch 8 - iter 104/133 - loss 0.01056378 - samples/sec: 754.99 - lr: 0.010000
2023-02-06 08:30:59,473 epoch 8 - iter 117/133 - loss 0.01055726 - samples/sec: 740.74 - lr: 0.010000
2023-02-06 08:31:00,790 epoch 8 - iter 130/133 - loss 0.01054234 - samples/sec: 730.40 - lr: 0.010000
2023-02-06 08:31:01,299 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:01,301 EPOCH 8 done: loss 0.0106 - lr 0.010000
2023-02-06 08:31:03,556 Evaluating as a multi-label problem: False
2023-02-06 08:31:03,573 DEV : loss 0.010619796812534332 - f1-score (micro avg)  0.602
2023-02-06 08:31:04,148 BAD EPOCHS (no improvement): 1
2023-02-06 08:31:04,153 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:05,493 epoch 9 - iter 13/133 - loss 0.01055787 - samples/sec: 714.38 - lr: 0.010000
2023-02-06 08:31:06,991 epoch 9 - iter 26/133 - loss 0.01055880 - samples/sec: 756.84 - lr: 0.010000
2023-02-06 08:31:08,220 epoch 9 - iter 39/133 - loss 0.01058857 - samples/sec: 784.11 - lr: 0.010000
2023-02-06 08:31:09,733 epoch 9 - iter 52/133 - loss 0.01050204 - samples/sec: 743.77 - lr: 0.010000
2023-02-06 08:31:11,006 epoch 9 - iter 65/133 - loss 0.01049462 - samples/sec: 757.49 - lr: 0.010000
2023-02-06 08:31:12,320 epoch 9 - iter 78/133 - loss 0.01049927 - samples/sec: 726.38 - lr: 0.010000
2023-02-06 08:31:13,836 epoch 9 - iter 91/133 - loss 0.01053675 - samples/sec: 753.53 - lr: 0.010000
2023-02-06 08:31:15,093 epoch 9 - iter 104/133 - loss 0.01051643 - samples/sec: 763.35 - lr: 0.010000
2023-02-06 08:31:16,571 epoch 9 - iter 117/133 - loss 0.01051333 - samples/sec: 770.43 - lr: 0.010000
2023-02-06 08:31:17,840 epoch 9 - iter 130/133 - loss 0.01052863 - samples/sec: 764.73 - lr: 0.010000
2023-02-06 08:31:18,111 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:18,112 EPOCH 9 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:20,513 Evaluating as a multi-label problem: False
2023-02-06 08:31:20,529 DEV : loss 0.010611701756715775 - f1-score (micro avg)  0.6127
2023-02-06 08:31:21,099 BAD EPOCHS (no improvement): 0
2023-02-06 08:31:21,105 saving best model
2023-02-06 08:31:21,180 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:22,488 epoch 10 - iter 13/133 - loss 0.01068018 - samples/sec: 735.19 - lr: 0.010000
2023-02-06 08:31:23,814 epoch 10 - iter 26/133 - loss 0.01048881 - samples/sec: 719.40 - lr: 0.010000
2023-02-06 08:31:25,348 epoch 10 - iter 39/133 - loss 0.01057341 - samples/sec: 607.48 - lr: 0.010000
2023-02-06 08:31:26,612 epoch 10 - iter 52/133 - loss 0.01053287 - samples/sec: 762.66 - lr: 0.010000
2023-02-06 08:31:28,080 epoch 10 - iter 65/133 - loss 0.01053009 - samples/sec: 780.80 - lr: 0.010000
2023-02-06 08:31:29,348 epoch 10 - iter 78/133 - loss 0.01049424 - samples/sec: 765.03 - lr: 0.010000
2023-02-06 08:31:30,907 epoch 10 - iter 91/133 - loss 0.01049714 - samples/sec: 602.01 - lr: 0.010000
2023-02-06 08:31:32,299 epoch 10 - iter 104/133 - loss 0.01051002 - samples/sec: 688.23 - lr: 0.010000
2023-02-06 08:31:33,585 epoch 10 - iter 117/133 - loss 0.01050991 - samples/sec: 751.61 - lr: 0.010000
2023-02-06 08:31:35,136 epoch 10 - iter 130/133 - loss 0.01049037 - samples/sec: 721.95 - lr: 0.010000
2023-02-06 08:31:35,429 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:35,431 EPOCH 10 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:37,895 Evaluating as a multi-label problem: False
2023-02-06 08:31:37,910 DEV : loss 0.010555021464824677 - f1-score (micro avg)  0.612
2023-02-06 08:31:38,250 BAD EPOCHS (no improvement): 1
2023-02-06 08:31:38,266 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:39,815 epoch 11 - iter 13/133 - loss 0.01014661 - samples/sec: 717.23 - lr: 0.010000
2023-02-06 08:31:41,095 epoch 11 - iter 26/133 - loss 0.01037157 - samples/sec: 747.91 - lr: 0.010000
2023-02-06 08:31:42,350 epoch 11 - iter 39/133 - loss 0.01039031 - samples/sec: 771.90 - lr: 0.010000
2023-02-06 08:31:43,850 epoch 11 - iter 52/133 - loss 0.01048393 - samples/sec: 763.72 - lr: 0.010000
2023-02-06 08:31:45,153 epoch 11 - iter 65/133 - loss 0.01050528 - samples/sec: 737.89 - lr: 0.010000
2023-02-06 08:31:46,661 epoch 11 - iter 78/133 - loss 0.01048936 - samples/sec: 752.50 - lr: 0.010000
2023-02-06 08:31:47,936 epoch 11 - iter 91/133 - loss 0.01046032 - samples/sec: 756.43 - lr: 0.010000
2023-02-06 08:31:49,443 epoch 11 - iter 104/133 - loss 0.01049842 - samples/sec: 750.46 - lr: 0.010000
2023-02-06 08:31:50,667 epoch 11 - iter 117/133 - loss 0.01048207 - samples/sec: 788.09 - lr: 0.010000
2023-02-06 08:31:51,915 epoch 11 - iter 130/133 - loss 0.01047867 - samples/sec: 764.34 - lr: 0.010000
2023-02-06 08:31:52,443 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:52,447 EPOCH 11 done: loss 0.0105 - lr 0.010000
2023-02-06 08:31:54,642 Evaluating as a multi-label problem: False
2023-02-06 08:31:54,659 DEV : loss 0.010583124123513699 - f1-score (micro avg)  0.618
2023-02-06 08:31:55,235 BAD EPOCHS (no improvement): 0
2023-02-06 08:31:55,243 saving best model
2023-02-06 08:31:55,324 ----------------------------------------------------------------------------------------------------
2023-02-06 08:31:56,599 epoch 12 - iter 13/133 - loss 0.01034765 - samples/sec: 758.67 - lr: 0.010000
2023-02-06 08:31:58,049 epoch 12 - iter 26/133 - loss 0.01038689 - samples/sec: 649.83 - lr: 0.010000
2023-02-06 08:31:59,293 epoch 12 - iter 39/133 - loss 0.01041491 - samples/sec: 771.48 - lr: 0.010000
2023-02-06 08:32:00,827 epoch 12 - iter 52/133 - loss 0.01039636 - samples/sec: 749.22 - lr: 0.010000
2023-02-06 08:32:02,125 epoch 12 - iter 65/133 - loss 0.01039765 - samples/sec: 734.58 - lr: 0.010000
2023-02-06 08:32:03,651 epoch 12 - iter 78/133 - loss 0.01037797 - samples/sec: 742.60 - lr: 0.010000
2023-02-06 08:32:04,912 epoch 12 - iter 91/133 - loss 0.01037713 - samples/sec: 767.06 - lr: 0.010000
2023-02-06 08:32:06,155 epoch 12 - iter 104/133 - loss 0.01039333 - samples/sec: 778.01 - lr: 0.010000
2023-02-06 08:32:07,679 epoch 12 - iter 117/133 - loss 0.01039785 - samples/sec: 612.76 - lr: 0.010000
2023-02-06 08:32:08,958 epoch 12 - iter 130/133 - loss 0.01041191 - samples/sec: 749.49 - lr: 0.010000
2023-02-06 08:32:09,221 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:09,225 EPOCH 12 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:11,743 Evaluating as a multi-label problem: False
2023-02-06 08:32:11,761 DEV : loss 0.010490193963050842 - f1-score (micro avg)  0.6233
2023-02-06 08:32:12,343 BAD EPOCHS (no improvement): 0
2023-02-06 08:32:12,347 saving best model
2023-02-06 08:32:12,425 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:13,768 epoch 13 - iter 13/133 - loss 0.01044893 - samples/sec: 711.51 - lr: 0.010000
2023-02-06 08:32:15,331 epoch 13 - iter 26/133 - loss 0.01037701 - samples/sec: 597.05 - lr: 0.010000
2023-02-06 08:32:16,636 epoch 13 - iter 39/133 - loss 0.01041042 - samples/sec: 729.64 - lr: 0.010000
2023-02-06 08:32:18,179 epoch 13 - iter 52/133 - loss 0.01039558 - samples/sec: 639.59 - lr: 0.010000
2023-02-06 08:32:20,357 epoch 13 - iter 65/133 - loss 0.01036643 - samples/sec: 453.47 - lr: 0.010000
2023-02-06 08:32:22,076 epoch 13 - iter 78/133 - loss 0.01034448 - samples/sec: 576.82 - lr: 0.010000
2023-02-06 08:32:23,544 epoch 13 - iter 91/133 - loss 0.01037494 - samples/sec: 776.14 - lr: 0.010000
2023-02-06 08:32:24,857 epoch 13 - iter 104/133 - loss 0.01038988 - samples/sec: 723.98 - lr: 0.010000
2023-02-06 08:32:26,302 epoch 13 - iter 117/133 - loss 0.01037204 - samples/sec: 803.02 - lr: 0.010000
2023-02-06 08:32:27,579 epoch 13 - iter 130/133 - loss 0.01037025 - samples/sec: 756.57 - lr: 0.010000
2023-02-06 08:32:27,857 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:27,858 EPOCH 13 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:30,369 Evaluating as a multi-label problem: False
2023-02-06 08:32:30,385 DEV : loss 0.010483094491064548 - f1-score (micro avg)  0.6207
2023-02-06 08:32:30,744 BAD EPOCHS (no improvement): 1
2023-02-06 08:32:30,752 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:32,325 epoch 14 - iter 13/133 - loss 0.01026158 - samples/sec: 717.41 - lr: 0.010000
2023-02-06 08:32:33,586 epoch 14 - iter 26/133 - loss 0.01037027 - samples/sec: 762.17 - lr: 0.010000
2023-02-06 08:32:35,070 epoch 14 - iter 39/133 - loss 0.01036379 - samples/sec: 774.03 - lr: 0.010000
2023-02-06 08:32:36,383 epoch 14 - iter 52/133 - loss 0.01035813 - samples/sec: 729.67 - lr: 0.010000
2023-02-06 08:32:37,889 epoch 14 - iter 65/133 - loss 0.01031572 - samples/sec: 748.65 - lr: 0.010000
2023-02-06 08:32:39,182 epoch 14 - iter 78/133 - loss 0.01034433 - samples/sec: 743.14 - lr: 0.010000
2023-02-06 08:32:40,475 epoch 14 - iter 91/133 - loss 0.01037816 - samples/sec: 742.25 - lr: 0.010000
2023-02-06 08:32:41,954 epoch 14 - iter 104/133 - loss 0.01039795 - samples/sec: 782.25 - lr: 0.010000
2023-02-06 08:32:43,225 epoch 14 - iter 117/133 - loss 0.01038837 - samples/sec: 761.71 - lr: 0.010000
2023-02-06 08:32:44,737 epoch 14 - iter 130/133 - loss 0.01036175 - samples/sec: 745.28 - lr: 0.010000
2023-02-06 08:32:45,035 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:45,040 EPOCH 14 done: loss 0.0104 - lr 0.010000
2023-02-06 08:32:47,510 Evaluating as a multi-label problem: False
2023-02-06 08:32:47,528 DEV : loss 0.010432829149067402 - f1-score (micro avg)  0.626
2023-02-06 08:32:47,863 BAD EPOCHS (no improvement): 0
2023-02-06 08:32:47,871 saving best model
2023-02-06 08:32:47,944 ----------------------------------------------------------------------------------------------------
2023-02-06 08:32:49,537 epoch 15 - iter 13/133 - loss 0.01019386 - samples/sec: 698.75 - lr: 0.010000
2023-02-06 08:32:50,800 epoch 15 - iter 26/133 - loss 0.01019158 - samples/sec: 758.25 - lr: 0.010000
2023-02-06 08:32:52,065 epoch 15 - iter 39/133 - loss 0.01015538 - samples/sec: 759.68 - lr: 0.010000
2023-02-06 08:32:53,509 epoch 15 - iter 52/133 - loss 0.01023823 - samples/sec: 804.56 - lr: 0.010000
2023-02-06 08:32:54,834 epoch 15 - iter 65/133 - loss 0.01026660 - samples/sec: 722.21 - lr: 0.010000
2023-02-06 08:32:56,442 epoch 15 - iter 78/133 - loss 0.01025501 - samples/sec: 717.72 - lr: 0.010000
2023-02-06 08:32:57,718 epoch 15 - iter 91/133 - loss 0.01024956 - samples/sec: 756.16 - lr: 0.010000
2023-02-06 08:32:59,173 epoch 15 - iter 104/133 - loss 0.01028768 - samples/sec: 783.99 - lr: 0.010000
2023-02-06 08:33:00,444 epoch 15 - iter 117/133 - loss 0.01027921 - samples/sec: 758.72 - lr: 0.010000
2023-02-06 08:33:01,708 epoch 15 - iter 130/133 - loss 0.01030246 - samples/sec: 760.06 - lr: 0.010000
2023-02-06 08:33:02,242 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:02,248 EPOCH 15 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:04,549 Evaluating as a multi-label problem: False
2023-02-06 08:33:04,568 DEV : loss 0.010397534817457199 - f1-score (micro avg)  0.6247
2023-02-06 08:33:05,171 BAD EPOCHS (no improvement): 1
2023-02-06 08:33:05,181 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:06,547 epoch 16 - iter 13/133 - loss 0.01041342 - samples/sec: 696.13 - lr: 0.010000
2023-02-06 08:33:08,089 epoch 16 - iter 26/133 - loss 0.01036971 - samples/sec: 726.77 - lr: 0.010000
2023-02-06 08:33:09,375 epoch 16 - iter 39/133 - loss 0.01029897 - samples/sec: 745.27 - lr: 0.010000
2023-02-06 08:33:10,662 epoch 16 - iter 52/133 - loss 0.01030162 - samples/sec: 746.88 - lr: 0.010000
2023-02-06 08:33:12,125 epoch 16 - iter 65/133 - loss 0.01031824 - samples/sec: 780.89 - lr: 0.010000
2023-02-06 08:33:13,387 epoch 16 - iter 78/133 - loss 0.01031728 - samples/sec: 754.65 - lr: 0.010000
2023-02-06 08:33:14,895 epoch 16 - iter 91/133 - loss 0.01027123 - samples/sec: 757.20 - lr: 0.010000
2023-02-06 08:33:16,162 epoch 16 - iter 104/133 - loss 0.01027054 - samples/sec: 764.32 - lr: 0.010000
2023-02-06 08:33:17,639 epoch 16 - iter 117/133 - loss 0.01024219 - samples/sec: 633.84 - lr: 0.010000
2023-02-06 08:33:18,899 epoch 16 - iter 130/133 - loss 0.01026610 - samples/sec: 758.90 - lr: 0.010000
2023-02-06 08:33:19,184 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:19,188 EPOCH 16 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:21,632 Evaluating as a multi-label problem: False
2023-02-06 08:33:21,649 DEV : loss 0.010406638495624065 - f1-score (micro avg)  0.6253
2023-02-06 08:33:22,222 BAD EPOCHS (no improvement): 2
2023-02-06 08:33:22,234 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:23,528 epoch 17 - iter 13/133 - loss 0.01033387 - samples/sec: 738.38 - lr: 0.010000
2023-02-06 08:33:24,760 epoch 17 - iter 26/133 - loss 0.01031095 - samples/sec: 781.92 - lr: 0.010000
2023-02-06 08:33:26,300 epoch 17 - iter 39/133 - loss 0.01028919 - samples/sec: 746.79 - lr: 0.010000
2023-02-06 08:33:27,590 epoch 17 - iter 52/133 - loss 0.01030368 - samples/sec: 739.39 - lr: 0.010000
2023-02-06 08:33:29,070 epoch 17 - iter 65/133 - loss 0.01029647 - samples/sec: 634.36 - lr: 0.010000
2023-02-06 08:33:30,298 epoch 17 - iter 78/133 - loss 0.01029278 - samples/sec: 782.85 - lr: 0.010000
2023-02-06 08:33:31,598 epoch 17 - iter 91/133 - loss 0.01028871 - samples/sec: 734.99 - lr: 0.010000
2023-02-06 08:33:33,082 epoch 17 - iter 104/133 - loss 0.01029995 - samples/sec: 762.60 - lr: 0.010000
2023-02-06 08:33:34,331 epoch 17 - iter 117/133 - loss 0.01028484 - samples/sec: 776.27 - lr: 0.010000
2023-02-06 08:33:35,784 epoch 17 - iter 130/133 - loss 0.01027576 - samples/sec: 785.80 - lr: 0.010000
2023-02-06 08:33:36,070 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:36,071 EPOCH 17 done: loss 0.0103 - lr 0.010000
2023-02-06 08:33:38,498 Evaluating as a multi-label problem: False
2023-02-06 08:33:38,515 DEV : loss 0.01034807600080967 - f1-score (micro avg)  0.63
2023-02-06 08:33:38,856 BAD EPOCHS (no improvement): 0
2023-02-06 08:33:38,862 saving best model
2023-02-06 08:33:38,939 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:40,462 epoch 18 - iter 13/133 - loss 0.01017348 - samples/sec: 740.64 - lr: 0.010000
2023-02-06 08:33:41,723 epoch 18 - iter 26/133 - loss 0.01019914 - samples/sec: 764.13 - lr: 0.010000
2023-02-06 08:33:43,017 epoch 18 - iter 39/133 - loss 0.01021330 - samples/sec: 737.55 - lr: 0.010000
2023-02-06 08:33:44,471 epoch 18 - iter 52/133 - loss 0.01018504 - samples/sec: 782.18 - lr: 0.010000
2023-02-06 08:33:45,771 epoch 18 - iter 65/133 - loss 0.01017944 - samples/sec: 740.07 - lr: 0.010000
2023-02-06 08:33:47,306 epoch 18 - iter 78/133 - loss 0.01020170 - samples/sec: 734.11 - lr: 0.010000
2023-02-06 08:33:48,590 epoch 18 - iter 91/133 - loss 0.01021375 - samples/sec: 743.50 - lr: 0.010000
2023-02-06 08:33:50,106 epoch 18 - iter 104/133 - loss 0.01019670 - samples/sec: 745.19 - lr: 0.010000
2023-02-06 08:33:51,371 epoch 18 - iter 117/133 - loss 0.01023334 - samples/sec: 762.98 - lr: 0.010000
2023-02-06 08:33:52,871 epoch 18 - iter 130/133 - loss 0.01022335 - samples/sec: 764.73 - lr: 0.010000
2023-02-06 08:33:53,154 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:53,156 EPOCH 18 done: loss 0.0102 - lr 0.010000
2023-02-06 08:33:55,611 Evaluating as a multi-label problem: False
2023-02-06 08:33:55,629 DEV : loss 0.010320308618247509 - f1-score (micro avg)  0.6313
2023-02-06 08:33:55,977 BAD EPOCHS (no improvement): 0
2023-02-06 08:33:55,987 saving best model
2023-02-06 08:33:56,065 ----------------------------------------------------------------------------------------------------
2023-02-06 08:33:57,370 epoch 19 - iter 13/133 - loss 0.01029091 - samples/sec: 738.06 - lr: 0.010000
2023-02-06 08:33:58,890 epoch 19 - iter 26/133 - loss 0.01023014 - samples/sec: 750.92 - lr: 0.010000
2023-02-06 08:34:00,150 epoch 19 - iter 39/133 - loss 0.01020864 - samples/sec: 762.09 - lr: 0.010000
2023-02-06 08:34:01,681 epoch 19 - iter 52/133 - loss 0.01024439 - samples/sec: 741.73 - lr: 0.010000
2023-02-06 08:34:02,906 epoch 19 - iter 65/133 - loss 0.01023181 - samples/sec: 790.97 - lr: 0.010000
2023-02-06 08:34:04,433 epoch 19 - iter 78/133 - loss 0.01022412 - samples/sec: 613.31 - lr: 0.010000
2023-02-06 08:34:05,780 epoch 19 - iter 91/133 - loss 0.01019693 - samples/sec: 712.09 - lr: 0.010000
2023-02-06 08:34:07,187 epoch 19 - iter 104/133 - loss 0.01022081 - samples/sec: 673.66 - lr: 0.010000
2023-02-06 08:34:08,668 epoch 19 - iter 117/133 - loss 0.01022890 - samples/sec: 785.83 - lr: 0.010000
2023-02-06 08:34:09,910 epoch 19 - iter 130/133 - loss 0.01020723 - samples/sec: 777.53 - lr: 0.010000
2023-02-06 08:34:10,200 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:10,207 EPOCH 19 done: loss 0.0102 - lr 0.010000
2023-02-06 08:34:12,679 Evaluating as a multi-label problem: False
2023-02-06 08:34:12,700 DEV : loss 0.010296817868947983 - f1-score (micro avg)  0.64
2023-02-06 08:34:13,311 BAD EPOCHS (no improvement): 0
2023-02-06 08:34:13,316 saving best model
2023-02-06 08:34:13,390 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:14,758 epoch 20 - iter 13/133 - loss 0.01021864 - samples/sec: 703.40 - lr: 0.010000
2023-02-06 08:34:16,077 epoch 20 - iter 26/133 - loss 0.01028711 - samples/sec: 725.84 - lr: 0.010000
2023-02-06 08:34:17,634 epoch 20 - iter 39/133 - loss 0.01022971 - samples/sec: 745.04 - lr: 0.010000
2023-02-06 08:34:18,921 epoch 20 - iter 52/133 - loss 0.01026002 - samples/sec: 750.90 - lr: 0.010000
2023-02-06 08:34:20,467 epoch 20 - iter 65/133 - loss 0.01026057 - samples/sec: 602.55 - lr: 0.010000
2023-02-06 08:34:21,753 epoch 20 - iter 78/133 - loss 0.01026928 - samples/sec: 751.33 - lr: 0.010000
2023-02-06 08:34:23,292 epoch 20 - iter 91/133 - loss 0.01025076 - samples/sec: 736.16 - lr: 0.010000
2023-02-06 08:34:24,579 epoch 20 - iter 104/133 - loss 0.01020640 - samples/sec: 746.82 - lr: 0.010000
2023-02-06 08:34:25,909 epoch 20 - iter 117/133 - loss 0.01019171 - samples/sec: 719.60 - lr: 0.010000
2023-02-06 08:34:27,438 epoch 20 - iter 130/133 - loss 0.01017225 - samples/sec: 738.30 - lr: 0.010000
2023-02-06 08:34:27,739 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:27,744 EPOCH 20 done: loss 0.0102 - lr 0.010000
2023-02-06 08:34:30,257 Evaluating as a multi-label problem: False
2023-02-06 08:34:30,274 DEV : loss 0.010265583172440529 - f1-score (micro avg)  0.6413
2023-02-06 08:34:30,654 BAD EPOCHS (no improvement): 0
2023-02-06 08:34:30,660 saving best model
2023-02-06 08:34:30,739 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:32,330 epoch 21 - iter 13/133 - loss 0.01014521 - samples/sec: 710.15 - lr: 0.010000
2023-02-06 08:34:33,625 epoch 21 - iter 26/133 - loss 0.01018544 - samples/sec: 743.43 - lr: 0.010000
2023-02-06 08:34:35,128 epoch 21 - iter 39/133 - loss 0.01014949 - samples/sec: 755.29 - lr: 0.010000
2023-02-06 08:34:36,388 epoch 21 - iter 52/133 - loss 0.01015701 - samples/sec: 758.49 - lr: 0.010000
2023-02-06 08:34:37,625 epoch 21 - iter 65/133 - loss 0.01014343 - samples/sec: 781.03 - lr: 0.010000
2023-02-06 08:34:39,127 epoch 21 - iter 78/133 - loss 0.01011384 - samples/sec: 758.01 - lr: 0.010000
2023-02-06 08:34:40,496 epoch 21 - iter 91/133 - loss 0.01012422 - samples/sec: 690.35 - lr: 0.010000
2023-02-06 08:34:42,023 epoch 21 - iter 104/133 - loss 0.01014283 - samples/sec: 761.00 - lr: 0.010000
2023-02-06 08:34:43,304 epoch 21 - iter 117/133 - loss 0.01013442 - samples/sec: 748.07 - lr: 0.010000
2023-02-06 08:34:44,869 epoch 21 - iter 130/133 - loss 0.01012862 - samples/sec: 730.48 - lr: 0.010000
2023-02-06 08:34:45,169 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:45,175 EPOCH 21 done: loss 0.0101 - lr 0.010000
2023-02-06 08:34:47,720 Evaluating as a multi-label problem: False
2023-02-06 08:34:47,743 DEV : loss 0.010291438549757004 - f1-score (micro avg)  0.6373
2023-02-06 08:34:48,104 BAD EPOCHS (no improvement): 1
2023-02-06 08:34:48,124 ----------------------------------------------------------------------------------------------------
2023-02-06 08:34:49,559 epoch 22 - iter 13/133 - loss 0.00996709 - samples/sec: 657.64 - lr: 0.010000
2023-02-06 08:34:51,095 epoch 22 - iter 26/133 - loss 0.01001206 - samples/sec: 739.55 - lr: 0.010000
2023-02-06 08:34:52,347 epoch 22 - iter 39/133 - loss 0.01004049 - samples/sec: 767.48 - lr: 0.010000
2023-02-06 08:34:53,920 epoch 22 - iter 52/133 - loss 0.01005317 - samples/sec: 722.99 - lr: 0.010000
2023-02-06 08:34:55,196 epoch 22 - iter 65/133 - loss 0.01010477 - samples/sec: 747.76 - lr: 0.010000
2023-02-06 08:34:56,737 epoch 22 - iter 78/133 - loss 0.01010079 - samples/sec: 608.24 - lr: 0.010000
2023-02-06 08:34:58,059 epoch 22 - iter 91/133 - loss 0.01013500 - samples/sec: 727.48 - lr: 0.010000
2023-02-06 08:34:59,404 epoch 22 - iter 104/133 - loss 0.01013831 - samples/sec: 712.32 - lr: 0.010000
2023-02-06 08:35:00,950 epoch 22 - iter 117/133 - loss 0.01014236 - samples/sec: 741.47 - lr: 0.010000
2023-02-06 08:35:02,201 epoch 22 - iter 130/133 - loss 0.01013044 - samples/sec: 762.45 - lr: 0.010000
2023-02-06 08:35:02,483 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:02,485 EPOCH 22 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:04,928 Evaluating as a multi-label problem: False
2023-02-06 08:35:04,944 DEV : loss 0.010224188677966595 - f1-score (micro avg)  0.6413
2023-02-06 08:35:05,519 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:05,528 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:06,856 epoch 23 - iter 13/133 - loss 0.01005563 - samples/sec: 720.28 - lr: 0.010000
2023-02-06 08:35:08,375 epoch 23 - iter 26/133 - loss 0.01002448 - samples/sec: 616.23 - lr: 0.010000
2023-02-06 08:35:09,661 epoch 23 - iter 39/133 - loss 0.01015809 - samples/sec: 739.97 - lr: 0.010000
2023-02-06 08:35:10,916 epoch 23 - iter 52/133 - loss 0.01016788 - samples/sec: 764.29 - lr: 0.010000
2023-02-06 08:35:12,458 epoch 23 - iter 65/133 - loss 0.01009484 - samples/sec: 739.26 - lr: 0.010000
2023-02-06 08:35:13,705 epoch 23 - iter 78/133 - loss 0.01008399 - samples/sec: 770.62 - lr: 0.010000
2023-02-06 08:35:15,187 epoch 23 - iter 91/133 - loss 0.01007382 - samples/sec: 769.82 - lr: 0.010000
2023-02-06 08:35:16,466 epoch 23 - iter 104/133 - loss 0.01006859 - samples/sec: 747.87 - lr: 0.010000
2023-02-06 08:35:18,033 epoch 23 - iter 117/133 - loss 0.01007952 - samples/sec: 718.89 - lr: 0.010000
2023-02-06 08:35:19,305 epoch 23 - iter 130/133 - loss 0.01007932 - samples/sec: 752.56 - lr: 0.010000
2023-02-06 08:35:19,591 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:19,593 EPOCH 23 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:22,099 Evaluating as a multi-label problem: False
2023-02-06 08:35:22,116 DEV : loss 0.010190014727413654 - f1-score (micro avg)  0.644
2023-02-06 08:35:22,476 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:22,484 saving best model
2023-02-06 08:35:22,562 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:24,159 epoch 24 - iter 13/133 - loss 0.01033764 - samples/sec: 707.79 - lr: 0.010000
2023-02-06 08:35:25,436 epoch 24 - iter 26/133 - loss 0.01039924 - samples/sec: 753.06 - lr: 0.010000
2023-02-06 08:35:26,953 epoch 24 - iter 39/133 - loss 0.01019226 - samples/sec: 761.33 - lr: 0.010000
2023-02-06 08:35:28,217 epoch 24 - iter 52/133 - loss 0.01010421 - samples/sec: 759.92 - lr: 0.010000
2023-02-06 08:35:29,503 epoch 24 - iter 65/133 - loss 0.01008049 - samples/sec: 751.64 - lr: 0.010000
2023-02-06 08:35:31,044 epoch 24 - iter 78/133 - loss 0.01005312 - samples/sec: 735.12 - lr: 0.010000
2023-02-06 08:35:32,319 epoch 24 - iter 91/133 - loss 0.01005299 - samples/sec: 759.51 - lr: 0.010000
2023-02-06 08:35:33,822 epoch 24 - iter 104/133 - loss 0.01003790 - samples/sec: 760.19 - lr: 0.010000
2023-02-06 08:35:35,097 epoch 24 - iter 117/133 - loss 0.01003322 - samples/sec: 752.83 - lr: 0.010000
2023-02-06 08:35:36,616 epoch 24 - iter 130/133 - loss 0.01004728 - samples/sec: 748.80 - lr: 0.010000
2023-02-06 08:35:36,902 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:36,903 EPOCH 24 done: loss 0.0101 - lr 0.010000
2023-02-06 08:35:39,354 Evaluating as a multi-label problem: False
2023-02-06 08:35:39,371 DEV : loss 0.010158772580325603 - f1-score (micro avg)  0.6487
2023-02-06 08:35:39,720 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:39,727 saving best model
2023-02-06 08:35:39,802 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:41,120 epoch 25 - iter 13/133 - loss 0.00981064 - samples/sec: 733.84 - lr: 0.010000
2023-02-06 08:35:42,650 epoch 25 - iter 26/133 - loss 0.00984903 - samples/sec: 745.83 - lr: 0.010000
2023-02-06 08:35:43,929 epoch 25 - iter 39/133 - loss 0.00991121 - samples/sec: 755.02 - lr: 0.010000
2023-02-06 08:35:45,467 epoch 25 - iter 52/133 - loss 0.01000175 - samples/sec: 740.89 - lr: 0.010000
2023-02-06 08:35:46,750 epoch 25 - iter 65/133 - loss 0.01000978 - samples/sec: 746.54 - lr: 0.010000
2023-02-06 08:35:48,252 epoch 25 - iter 78/133 - loss 0.01001222 - samples/sec: 770.84 - lr: 0.010000
2023-02-06 08:35:49,515 epoch 25 - iter 91/133 - loss 0.01000999 - samples/sec: 759.97 - lr: 0.010000
2023-02-06 08:35:51,036 epoch 25 - iter 104/133 - loss 0.00999015 - samples/sec: 616.30 - lr: 0.010000
2023-02-06 08:35:52,290 epoch 25 - iter 117/133 - loss 0.00998576 - samples/sec: 770.57 - lr: 0.010000
2023-02-06 08:35:53,576 epoch 25 - iter 130/133 - loss 0.00998035 - samples/sec: 745.63 - lr: 0.010000
2023-02-06 08:35:54,094 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:54,096 EPOCH 25 done: loss 0.0100 - lr 0.010000
2023-02-06 08:35:56,283 Evaluating as a multi-label problem: False
2023-02-06 08:35:56,301 DEV : loss 0.010137598030269146 - f1-score (micro avg)  0.6507
2023-02-06 08:35:56,866 BAD EPOCHS (no improvement): 0
2023-02-06 08:35:56,874 saving best model
2023-02-06 08:35:56,952 ----------------------------------------------------------------------------------------------------
2023-02-06 08:35:58,254 epoch 26 - iter 13/133 - loss 0.00981231 - samples/sec: 744.59 - lr: 0.010000
2023-02-06 08:35:59,716 epoch 26 - iter 26/133 - loss 0.00985499 - samples/sec: 779.93 - lr: 0.010000
2023-02-06 08:36:00,934 epoch 26 - iter 39/133 - loss 0.00986997 - samples/sec: 794.56 - lr: 0.010000
2023-02-06 08:36:02,450 epoch 26 - iter 52/133 - loss 0.00985057 - samples/sec: 750.90 - lr: 0.010000
2023-02-06 08:36:03,705 epoch 26 - iter 65/133 - loss 0.00991802 - samples/sec: 770.23 - lr: 0.010000
2023-02-06 08:36:04,983 epoch 26 - iter 78/133 - loss 0.00995249 - samples/sec: 752.52 - lr: 0.010000
2023-02-06 08:36:06,610 epoch 26 - iter 91/133 - loss 0.00994670 - samples/sec: 695.85 - lr: 0.010000
2023-02-06 08:36:07,854 epoch 26 - iter 104/133 - loss 0.00992897 - samples/sec: 766.60 - lr: 0.010000
2023-02-06 08:36:09,332 epoch 26 - iter 117/133 - loss 0.00995839 - samples/sec: 771.15 - lr: 0.010000
2023-02-06 08:36:10,585 epoch 26 - iter 130/133 - loss 0.00997863 - samples/sec: 763.77 - lr: 0.010000
2023-02-06 08:36:10,866 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:10,871 EPOCH 26 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:13,272 Evaluating as a multi-label problem: False
2023-02-06 08:36:13,289 DEV : loss 0.010154918767511845 - f1-score (micro avg)  0.6453
2023-02-06 08:36:13,875 BAD EPOCHS (no improvement): 1
2023-02-06 08:36:13,882 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:15,140 epoch 27 - iter 13/133 - loss 0.00982359 - samples/sec: 758.36 - lr: 0.010000
2023-02-06 08:36:16,393 epoch 27 - iter 26/133 - loss 0.00995263 - samples/sec: 765.88 - lr: 0.010000
2023-02-06 08:36:17,990 epoch 27 - iter 39/133 - loss 0.00994264 - samples/sec: 724.70 - lr: 0.010000
2023-02-06 08:36:19,734 epoch 27 - iter 52/133 - loss 0.00990056 - samples/sec: 584.51 - lr: 0.010000
2023-02-06 08:36:21,871 epoch 27 - iter 65/133 - loss 0.00989842 - samples/sec: 547.01 - lr: 0.010000
2023-02-06 08:36:23,233 epoch 27 - iter 78/133 - loss 0.00990904 - samples/sec: 698.41 - lr: 0.010000
2023-02-06 08:36:24,750 epoch 27 - iter 91/133 - loss 0.00997472 - samples/sec: 741.54 - lr: 0.010000
2023-02-06 08:36:25,989 epoch 27 - iter 104/133 - loss 0.00996257 - samples/sec: 774.43 - lr: 0.010000
2023-02-06 08:36:27,217 epoch 27 - iter 117/133 - loss 0.00995437 - samples/sec: 781.46 - lr: 0.010000
2023-02-06 08:36:28,665 epoch 27 - iter 130/133 - loss 0.00995591 - samples/sec: 787.10 - lr: 0.010000
2023-02-06 08:36:28,936 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:28,941 EPOCH 27 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:31,339 Evaluating as a multi-label problem: False
2023-02-06 08:36:31,357 DEV : loss 0.010085121728479862 - f1-score (micro avg)  0.6567
2023-02-06 08:36:31,722 BAD EPOCHS (no improvement): 0
2023-02-06 08:36:31,732 saving best model
2023-02-06 08:36:31,827 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:33,404 epoch 28 - iter 13/133 - loss 0.01020064 - samples/sec: 708.07 - lr: 0.010000
2023-02-06 08:36:34,623 epoch 28 - iter 26/133 - loss 0.01013967 - samples/sec: 786.34 - lr: 0.010000
2023-02-06 08:36:36,131 epoch 28 - iter 39/133 - loss 0.01003563 - samples/sec: 758.40 - lr: 0.010000
2023-02-06 08:36:37,442 epoch 28 - iter 52/133 - loss 0.00998388 - samples/sec: 730.28 - lr: 0.010000
2023-02-06 08:36:38,722 epoch 28 - iter 65/133 - loss 0.00999888 - samples/sec: 748.06 - lr: 0.010000
2023-02-06 08:36:40,168 epoch 28 - iter 78/133 - loss 0.01003122 - samples/sec: 786.57 - lr: 0.010000
2023-02-06 08:36:41,456 epoch 28 - iter 91/133 - loss 0.01000777 - samples/sec: 744.48 - lr: 0.010000
2023-02-06 08:36:42,925 epoch 28 - iter 104/133 - loss 0.00998209 - samples/sec: 783.40 - lr: 0.010000
2023-02-06 08:36:44,160 epoch 28 - iter 117/133 - loss 0.00999413 - samples/sec: 777.17 - lr: 0.010000
2023-02-06 08:36:45,652 epoch 28 - iter 130/133 - loss 0.00996400 - samples/sec: 627.73 - lr: 0.010000
2023-02-06 08:36:45,936 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:45,937 EPOCH 28 done: loss 0.0100 - lr 0.010000
2023-02-06 08:36:48,370 Evaluating as a multi-label problem: False
2023-02-06 08:36:48,390 DEV : loss 0.010063917376101017 - f1-score (micro avg)  0.6567
2023-02-06 08:36:48,774 BAD EPOCHS (no improvement): 0
2023-02-06 08:36:48,783 ----------------------------------------------------------------------------------------------------
2023-02-06 08:36:50,112 epoch 29 - iter 13/133 - loss 0.01007614 - samples/sec: 715.39 - lr: 0.010000
2023-02-06 08:36:51,579 epoch 29 - iter 26/133 - loss 0.00997458 - samples/sec: 766.42 - lr: 0.010000
2023-02-06 08:36:52,814 epoch 29 - iter 39/133 - loss 0.00989408 - samples/sec: 781.38 - lr: 0.010000
2023-02-06 08:36:54,264 epoch 29 - iter 52/133 - loss 0.00989758 - samples/sec: 784.84 - lr: 0.010000
2023-02-06 08:36:55,532 epoch 29 - iter 65/133 - loss 0.00991688 - samples/sec: 756.52 - lr: 0.010000
2023-02-06 08:36:57,026 epoch 29 - iter 78/133 - loss 0.00991818 - samples/sec: 758.17 - lr: 0.010000
2023-02-06 08:36:58,307 epoch 29 - iter 91/133 - loss 0.00989315 - samples/sec: 756.41 - lr: 0.010000
2023-02-06 08:36:59,562 epoch 29 - iter 104/133 - loss 0.00987888 - samples/sec: 767.41 - lr: 0.010000
2023-02-06 08:37:01,023 epoch 29 - iter 117/133 - loss 0.00989864 - samples/sec: 642.50 - lr: 0.010000
2023-02-06 08:37:02,264 epoch 29 - iter 130/133 - loss 0.00992279 - samples/sec: 772.60 - lr: 0.010000
2023-02-06 08:37:02,549 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:02,550 EPOCH 29 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:05,071 Evaluating as a multi-label problem: False
2023-02-06 08:37:05,088 DEV : loss 0.010063448920845985 - f1-score (micro avg)  0.6533
2023-02-06 08:37:05,677 BAD EPOCHS (no improvement): 1
2023-02-06 08:37:05,684 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:06,997 epoch 30 - iter 13/133 - loss 0.01003949 - samples/sec: 732.41 - lr: 0.010000
2023-02-06 08:37:08,331 epoch 30 - iter 26/133 - loss 0.01015033 - samples/sec: 719.55 - lr: 0.010000
2023-02-06 08:37:09,806 epoch 30 - iter 39/133 - loss 0.01011311 - samples/sec: 636.91 - lr: 0.010000
2023-02-06 08:37:11,050 epoch 30 - iter 52/133 - loss 0.00997797 - samples/sec: 769.41 - lr: 0.010000
2023-02-06 08:37:12,552 epoch 30 - iter 65/133 - loss 0.00995678 - samples/sec: 763.55 - lr: 0.010000
2023-02-06 08:37:13,798 epoch 30 - iter 78/133 - loss 0.00991438 - samples/sec: 771.97 - lr: 0.010000
2023-02-06 08:37:15,297 epoch 30 - iter 91/133 - loss 0.00988681 - samples/sec: 753.64 - lr: 0.010000
2023-02-06 08:37:16,543 epoch 30 - iter 104/133 - loss 0.00986966 - samples/sec: 770.92 - lr: 0.010000
2023-02-06 08:37:17,762 epoch 30 - iter 117/133 - loss 0.00987746 - samples/sec: 785.58 - lr: 0.010000
2023-02-06 08:37:19,280 epoch 30 - iter 130/133 - loss 0.00989263 - samples/sec: 738.22 - lr: 0.010000
2023-02-06 08:37:19,569 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:19,571 EPOCH 30 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:22,147 Evaluating as a multi-label problem: False
2023-02-06 08:37:22,165 DEV : loss 0.010032457299530506 - f1-score (micro avg)  0.6627
2023-02-06 08:37:22,507 BAD EPOCHS (no improvement): 0
2023-02-06 08:37:22,515 saving best model
2023-02-06 08:37:22,593 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:24,034 epoch 31 - iter 13/133 - loss 0.00986991 - samples/sec: 795.89 - lr: 0.010000
2023-02-06 08:37:25,350 epoch 31 - iter 26/133 - loss 0.00980032 - samples/sec: 722.12 - lr: 0.010000
2023-02-06 08:37:26,804 epoch 31 - iter 39/133 - loss 0.00981070 - samples/sec: 788.11 - lr: 0.010000
2023-02-06 08:37:28,032 epoch 31 - iter 52/133 - loss 0.00978956 - samples/sec: 782.72 - lr: 0.010000
2023-02-06 08:37:29,262 epoch 31 - iter 65/133 - loss 0.00985205 - samples/sec: 776.53 - lr: 0.010000
2023-02-06 08:37:30,801 epoch 31 - iter 78/133 - loss 0.00986377 - samples/sec: 734.35 - lr: 0.010000
2023-02-06 08:37:32,105 epoch 31 - iter 91/133 - loss 0.00986039 - samples/sec: 737.43 - lr: 0.010000
2023-02-06 08:37:33,586 epoch 31 - iter 104/133 - loss 0.00986586 - samples/sec: 766.82 - lr: 0.010000
2023-02-06 08:37:34,867 epoch 31 - iter 117/133 - loss 0.00988794 - samples/sec: 748.41 - lr: 0.010000
2023-02-06 08:37:36,405 epoch 31 - iter 130/133 - loss 0.00986537 - samples/sec: 732.70 - lr: 0.010000
2023-02-06 08:37:36,707 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:36,713 EPOCH 31 done: loss 0.0099 - lr 0.010000
2023-02-06 08:37:39,148 Evaluating as a multi-label problem: False
2023-02-06 08:37:39,165 DEV : loss 0.010030188597738743 - f1-score (micro avg)  0.6507
2023-02-06 08:37:39,503 BAD EPOCHS (no improvement): 1
2023-02-06 08:37:39,509 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:40,819 epoch 32 - iter 13/133 - loss 0.00972815 - samples/sec: 729.87 - lr: 0.010000
2023-02-06 08:37:42,293 epoch 32 - iter 26/133 - loss 0.00993442 - samples/sec: 767.42 - lr: 0.010000
2023-02-06 08:37:43,527 epoch 32 - iter 39/133 - loss 0.00989563 - samples/sec: 777.81 - lr: 0.010000
2023-02-06 08:37:45,030 epoch 32 - iter 52/133 - loss 0.00987169 - samples/sec: 762.50 - lr: 0.010000
2023-02-06 08:37:46,312 epoch 32 - iter 65/133 - loss 0.00982198 - samples/sec: 744.56 - lr: 0.010000
2023-02-06 08:37:47,772 epoch 32 - iter 78/133 - loss 0.00984166 - samples/sec: 787.72 - lr: 0.010000
2023-02-06 08:37:49,052 epoch 32 - iter 91/133 - loss 0.00985835 - samples/sec: 753.47 - lr: 0.010000
2023-02-06 08:37:50,603 epoch 32 - iter 104/133 - loss 0.00985180 - samples/sec: 729.35 - lr: 0.010000
2023-02-06 08:37:51,833 epoch 32 - iter 117/133 - loss 0.00984472 - samples/sec: 780.52 - lr: 0.010000
2023-02-06 08:37:53,083 epoch 32 - iter 130/133 - loss 0.00982573 - samples/sec: 764.01 - lr: 0.010000
2023-02-06 08:37:53,402 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:53,407 EPOCH 32 done: loss 0.0098 - lr 0.010000
2023-02-06 08:37:55,865 Evaluating as a multi-label problem: False
2023-02-06 08:37:55,882 DEV : loss 0.009983059018850327 - f1-score (micro avg)  0.662
2023-02-06 08:37:56,448 BAD EPOCHS (no improvement): 2
2023-02-06 08:37:56,456 ----------------------------------------------------------------------------------------------------
2023-02-06 08:37:57,753 epoch 33 - iter 13/133 - loss 0.00986220 - samples/sec: 736.25 - lr: 0.010000
2023-02-06 08:37:59,189 epoch 33 - iter 26/133 - loss 0.00975062 - samples/sec: 802.53 - lr: 0.010000
2023-02-06 08:38:00,474 epoch 33 - iter 39/133 - loss 0.00986705 - samples/sec: 745.66 - lr: 0.010000
2023-02-06 08:38:01,738 epoch 33 - iter 52/133 - loss 0.00984679 - samples/sec: 754.60 - lr: 0.010000
2023-02-06 08:38:03,179 epoch 33 - iter 65/133 - loss 0.00978551 - samples/sec: 794.68 - lr: 0.010000
2023-02-06 08:38:04,429 epoch 33 - iter 78/133 - loss 0.00975048 - samples/sec: 765.26 - lr: 0.010000
2023-02-06 08:38:05,913 epoch 33 - iter 91/133 - loss 0.00976211 - samples/sec: 634.13 - lr: 0.010000
2023-02-06 08:38:07,200 epoch 33 - iter 104/133 - loss 0.00978878 - samples/sec: 740.16 - lr: 0.010000
2023-02-06 08:38:08,709 epoch 33 - iter 117/133 - loss 0.00982863 - samples/sec: 747.73 - lr: 0.010000
2023-02-06 08:38:10,026 epoch 33 - iter 130/133 - loss 0.00987417 - samples/sec: 722.74 - lr: 0.010000
2023-02-06 08:38:10,302 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:10,303 EPOCH 33 done: loss 0.0099 - lr 0.010000
2023-02-06 08:38:12,844 Evaluating as a multi-label problem: False
2023-02-06 08:38:12,862 DEV : loss 0.009982590563595295 - f1-score (micro avg)  0.66
2023-02-06 08:38:13,436 BAD EPOCHS (no improvement): 3
2023-02-06 08:38:13,443 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:14,816 epoch 34 - iter 13/133 - loss 0.00992892 - samples/sec: 690.92 - lr: 0.010000
2023-02-06 08:38:16,115 epoch 34 - iter 26/133 - loss 0.00987621 - samples/sec: 736.73 - lr: 0.010000
2023-02-06 08:38:17,696 epoch 34 - iter 39/133 - loss 0.00987597 - samples/sec: 734.20 - lr: 0.010000
2023-02-06 08:38:18,994 epoch 34 - iter 52/133 - loss 0.00991974 - samples/sec: 737.16 - lr: 0.010000
2023-02-06 08:38:20,513 epoch 34 - iter 65/133 - loss 0.00990955 - samples/sec: 619.03 - lr: 0.010000
2023-02-06 08:38:21,810 epoch 34 - iter 78/133 - loss 0.00985254 - samples/sec: 739.38 - lr: 0.010000
2023-02-06 08:38:23,273 epoch 34 - iter 91/133 - loss 0.00982011 - samples/sec: 779.25 - lr: 0.010000
2023-02-06 08:38:24,511 epoch 34 - iter 104/133 - loss 0.00980783 - samples/sec: 773.71 - lr: 0.010000
2023-02-06 08:38:25,739 epoch 34 - iter 117/133 - loss 0.00976338 - samples/sec: 780.95 - lr: 0.010000
2023-02-06 08:38:27,199 epoch 34 - iter 130/133 - loss 0.00978109 - samples/sec: 777.03 - lr: 0.010000
2023-02-06 08:38:27,468 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:27,472 EPOCH 34 done: loss 0.0098 - lr 0.010000
2023-02-06 08:38:29,920 Evaluating as a multi-label problem: False
2023-02-06 08:38:29,937 DEV : loss 0.009954135864973068 - f1-score (micro avg)  0.6647
2023-02-06 08:38:30,291 BAD EPOCHS (no improvement): 0
2023-02-06 08:38:30,298 saving best model
2023-02-06 08:38:30,373 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:31,950 epoch 35 - iter 13/133 - loss 0.00960910 - samples/sec: 708.10 - lr: 0.010000
2023-02-06 08:38:33,281 epoch 35 - iter 26/133 - loss 0.00965913 - samples/sec: 722.62 - lr: 0.010000
2023-02-06 08:38:34,761 epoch 35 - iter 39/133 - loss 0.00961002 - samples/sec: 636.49 - lr: 0.010000
2023-02-06 08:38:36,130 epoch 35 - iter 52/133 - loss 0.00968180 - samples/sec: 698.70 - lr: 0.010000
2023-02-06 08:38:37,349 epoch 35 - iter 65/133 - loss 0.00970834 - samples/sec: 786.80 - lr: 0.010000
2023-02-06 08:38:38,815 epoch 35 - iter 78/133 - loss 0.00976811 - samples/sec: 770.86 - lr: 0.010000
2023-02-06 08:38:40,015 epoch 35 - iter 91/133 - loss 0.00977029 - samples/sec: 805.65 - lr: 0.010000
2023-02-06 08:38:41,480 epoch 35 - iter 104/133 - loss 0.00976745 - samples/sec: 773.86 - lr: 0.010000
2023-02-06 08:38:42,701 epoch 35 - iter 117/133 - loss 0.00977891 - samples/sec: 787.95 - lr: 0.010000
2023-02-06 08:38:44,189 epoch 35 - iter 130/133 - loss 0.00974154 - samples/sec: 759.68 - lr: 0.010000
2023-02-06 08:38:44,483 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:44,489 EPOCH 35 done: loss 0.0098 - lr 0.010000
2023-02-06 08:38:46,913 Evaluating as a multi-label problem: False
2023-02-06 08:38:46,930 DEV : loss 0.009962853975594044 - f1-score (micro avg)  0.658
2023-02-06 08:38:47,267 BAD EPOCHS (no improvement): 1
2023-02-06 08:38:47,361 ----------------------------------------------------------------------------------------------------
2023-02-06 08:38:47,365 loading file /content/drive/MyDrive/Colab Notebooks/models/flair-sentiment-classifier/best-model.pt
2023-02-06 08:38:48,126 Evaluating as a multi-label problem: False
2023-02-06 08:38:48,139 0.6462	0.6462	0.6462	0.6462
2023-02-06 08:38:48,144 
Results:
- F-score (micro) 0.6462
- F-score (macro) 0.6426
- Accuracy 0.6462

By class:
              precision    recall  f1-score   support

           1     0.6291    0.7363    0.6785       182
           0     0.6712    0.5537    0.6068       177

    accuracy                         0.6462       359
   macro avg     0.6502    0.6450    0.6426       359
weighted avg     0.6499    0.6462    0.6431       359

2023-02-06 08:38:48,150 ----------------------------------------------------------------------------------------------------