pikaduck's picture
lfs added
6cf89af
raw
history blame
2.57 kB
"""
@author : Sakshi Tantak
"""
# Imports
import re
from time import time
from flair.models import TextClassifier
from flair.data import Sentence
import emoji
from paths import FLAIR_MODEL_PATH as MODEL_PATH
def clean_text(text):
text = re.sub(r'[\.]+', '.', text)
# print(text)
text = re.sub(r'[\!]+', '!', text)
# print(text)
text = re.sub(r'[\?]+', '!', text)
# print(text)
text = re.sub(r'\s+', ' ', text).strip().lower()
# print(text)
text = re.sub(r'@\w+', '', text).strip().lower()
# print(text)
text = re.sub(r'\s[n]+[o]+', ' no', text)
# print(text)
text = re.sub(r'n\'t', 'n not', text)
# print(text)
text = re.sub(r'\'nt', 'n not', text)
# print(text)
text = re.sub(r'\'re', ' are', text)
# print(text)
text = re.sub(r'\'s', ' is', text)
# print(text)
text = re.sub(r'\'d', ' would', text)
# print(text)
text = re.sub(r'\'ll', ' will', text)
# print(text)
text = re.sub(r'\'ve', ' have', text)
# print(text)
text = re.sub(r'\'m', ' am', text)
# print(text)
# map variations of nope to no
text = re.sub(r'\s[n]+[o]+[p]+[e]+', ' no', text)
# print(text)
# clean websites mentioned in text
text = re.sub(r'(https|http)?:\/\/(\w|\.|\/|\?|\=|\&|\%|\~)*\b', '', text, flags=re.MULTILINE).strip()
# print(text)
text = re.sub(r'(www.)(\w|\.|\/|\?|\=|\&|\%)*\b', '', text, flags=re.MULTILINE).strip()
# print(text)
text = re.sub(r'\w+.com', '', text).strip()
# print(text)
text = emoji.demojize(text)
return text
class SentimentClassifier:
def __init__(self):
print('Loading Flair sentiment classifier ...')
start = time()
self.model = TextClassifier.load(MODEL_PATH)
print(f'Time taken to load flair sentiment classifier = {time() - start}')
def predict(self, text):
text = clean_text(text)
print(f'cleaned text : {text}')
sentence = Sentence(text)
start = time()
self.model.predict(sentence)
print(f'Inference time = {time() - start}')
print(sentence.to_dict())
if sentence.to_dict()['all labels'][0]['value'] == '1':
return 'positive', sentence.to_dict()['all labels'][0]['confidence']
return 'negative', sentence.to_dict()['all labels'][0]['confidence']
if __name__ == '__main__':
text = input('Input tweet : ')
text = clean_text(text)
classifier = SentimentClassifier()
prediction, conf = classifier.predict(text)
print(text, ' : ', prediction, conf)