File size: 8,924 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os

import torch

from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version


if is_torch_version(">=", FSDP_PYTORCH_VERSION):
    import torch.distributed.checkpoint as dist_cp
    from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
    from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
    from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
    from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType


logger = get_logger(__name__)


def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0):
    os.makedirs(output_dir, exist_ok=True)
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        state_dict = model.state_dict()
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            weights_name = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin"
            output_model_file = os.path.join(output_dir, weights_name)
            if accelerator.process_index == 0:
                logger.info(f"Saving model to {output_model_file}")
                torch.save(state_dict, output_model_file)
                logger.info(f"Model saved to {output_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
            weights_name = (
                f"{MODEL_NAME}_rank{accelerator.process_index}.bin"
                if model_index == 0
                else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
            )
            output_model_file = os.path.join(output_dir, weights_name)
            logger.info(f"Saving model to {output_model_file}")
            torch.save(state_dict, output_model_file)
            logger.info(f"Model saved to {output_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
            ckpt_dir = os.path.join(output_dir, f"{MODEL_NAME}_{model_index}")
            os.makedirs(ckpt_dir, exist_ok=True)
            logger.info(f"Saving model to {ckpt_dir}")
            state_dict = {"model": state_dict}

            dist_cp.save_state_dict(
                state_dict=state_dict,
                storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
                planner=DefaultSavePlanner(),
            )
            logger.info(f"Model saved to {ckpt_dir}")


def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0):
    accelerator.wait_for_everyone()
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            if type(model) != FSDP and accelerator.process_index != 0:
                if not fsdp_plugin.sync_module_states:
                    raise ValueError(
                        "Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
                        "initializing FSDP object"
                    )
                return
            weights_name = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin"
            input_model_file = os.path.join(input_dir, weights_name)
            logger.info(f"Loading model from {input_model_file}")
            state_dict = torch.load(input_model_file)
            logger.info(f"Model loaded from {input_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
            weights_name = (
                f"{MODEL_NAME}_rank{accelerator.process_index}.bin"
                if model_index == 0
                else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
            )
            input_model_file = os.path.join(input_dir, weights_name)
            logger.info(f"Loading model from {input_model_file}")
            state_dict = torch.load(input_model_file)
            logger.info(f"Model loaded from {input_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
            ckpt_dir = (
                os.path.join(input_dir, f"{MODEL_NAME}_{model_index}")
                if f"{MODEL_NAME}" not in input_dir
                else input_dir
            )
            logger.info(f"Loading model from {ckpt_dir}")
            state_dict = {"model": model.state_dict()}
            dist_cp.load_state_dict(
                state_dict=state_dict,
                storage_reader=dist_cp.FileSystemReader(ckpt_dir),
                planner=DefaultLoadPlanner(),
            )
            state_dict = state_dict["model"]
            logger.info(f"Model loaded from {ckpt_dir}")
        model.load_state_dict(state_dict)


def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0):
    os.makedirs(output_dir, exist_ok=True)
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        optim_state = FSDP.optim_state_dict(model, optimizer)
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            if accelerator.process_index == 0:
                optim_state_name = (
                    f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
                )
                output_optimizer_file = os.path.join(output_dir, optim_state_name)
                logger.info(f"Saving Optimizer state to {output_optimizer_file}")
                torch.save(optim_state, output_optimizer_file)
                logger.info(f"Optimizer state saved in {output_optimizer_file}")
        else:
            ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
            os.makedirs(ckpt_dir, exist_ok=True)
            logger.info(f"Saving Optimizer state to {ckpt_dir}")
            dist_cp.save_state_dict(
                state_dict={"optimizer": optim_state},
                storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
                planner=DefaultSavePlanner(),
            )
            logger.info(f"Optimizer state saved in {ckpt_dir}")


def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0):
    accelerator.wait_for_everyone()
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            optim_state = None
            # below check should work but currently it isn't working (mostly opytorch issue),
            # in the meantime disabling it at the cost of excess memory usage
            # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
            optimizer_name = (
                f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
            )
            input_optimizer_file = os.path.join(input_dir, optimizer_name)
            logger.info(f"Loading Optimizer state from {input_optimizer_file}")
            optim_state = torch.load(input_optimizer_file)
            logger.info(f"Optimizer state loaded from {input_optimizer_file}")
        else:
            ckpt_dir = (
                os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
                if f"{OPTIMIZER_NAME}" not in input_dir
                else input_dir
            )
            logger.info(f"Loading Optimizer from {ckpt_dir}")
            optim_state = load_sharded_optimizer_state_dict(
                model_state_dict=model.state_dict(),
                optimizer_key="optimizer",
                storage_reader=dist_cp.FileSystemReader(ckpt_dir),
            )
            optim_state = optim_state["optimizer"]
            logger.info(f"Optimizer loaded from {ckpt_dir}")
        flattened_osd = FSDP.optim_state_dict_to_load(optim_state, model, optimizer)
        optimizer.load_state_dict(flattened_osd)