Spaces:
Sleeping
Sleeping
File size: 4,880 Bytes
82fea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A collection of utilities for ensuring that training can always occur. Heavily influenced by the
[toma](https://github.com/BlackHC/toma) library.
"""
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def release_memory(*objects):
"""
Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`.
Returned objects should be reassigned to the same variables.
Args:
objects (`Iterable`):
An iterable of objects
Returns:
A list of `None` objects to replace `objects`
Example:
```python
>>> import torch
>>> from accelerate.utils import release_memory
>>> a = torch.ones(1000, 1000).cuda()
>>> b = torch.ones(1000, 1000).cuda()
>>> a, b = release_memory(a, b)
```
"""
if not isinstance(objects, list):
objects = list(objects)
for i in range(len(objects)):
objects[i] = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def should_reduce_batch_size(exception: Exception) -> bool:
"""
Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory
Args:
exception (`Exception`):
An exception
"""
_statements = [
"CUDA out of memory.", # CUDA OOM
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
]
if isinstance(exception, RuntimeError) and len(exception.args) == 1:
return any(err in exception.args[0] for err in _statements)
return False
def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128):
"""
A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
CUDNN, the batch size is cut in half and passed to `function`
`function` must take in a `batch_size` parameter as its first argument.
Args:
function (`callable`, *optional*):
A function to wrap
starting_batch_size (`int`, *optional*):
The batch size to try and fit into memory
Example:
```python
>>> from accelerate.utils import find_executable_batch_size
>>> @find_executable_batch_size(starting_batch_size=128)
... def train(batch_size, model, optimizer):
... ...
>>> train(model, optimizer)
```
"""
if function is None:
return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size)
batch_size = starting_batch_size
def decorator(*args, **kwargs):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
params = list(inspect.signature(function).parameters.keys())
# Guard against user error
if len(params) < (len(args) + 1):
arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])])
raise TypeError(
f"Batch size was passed into `{function.__name__}` as the first argument when called."
f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`"
)
while True:
if batch_size == 0:
raise RuntimeError("No executable batch size found, reached zero.")
try:
return function(batch_size, *args, **kwargs)
except Exception as e:
if should_reduce_batch_size(e):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
|