File size: 61,743 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import gc
import inspect
import json
import logging
import os
import re
import shutil
import tempfile
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from ..state import AcceleratorState
from .constants import WEIGHTS_NAME
from .dataclasses import CustomDtype, DistributedType
from .imports import is_mps_available, is_safetensors_available, is_xpu_available
from .offload import load_offloaded_weight, offload_weight, save_offload_index
from .tqdm import is_tqdm_available, tqdm


if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file

WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"


logger = logging.getLogger(__name__)


def convert_file_size_to_int(size: Union[int, str]):
    """
    Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).

    Args:
        size (`int` or `str`): The size to convert. Will be directly returned if an `int`.

    Example:

    ```py
    >>> convert_file_size_to_int("1MiB")
    1048576
    ```
    """
    if isinstance(size, int):
        return size
    if size.upper().endswith("GIB"):
        return int(size[:-3]) * (2**30)
    if size.upper().endswith("MIB"):
        return int(size[:-3]) * (2**20)
    if size.upper().endswith("KIB"):
        return int(size[:-3]) * (2**10)
    if size.upper().endswith("GB"):
        int_size = int(size[:-2]) * (10**9)
        return int_size // 8 if size.endswith("b") else int_size
    if size.upper().endswith("MB"):
        int_size = int(size[:-2]) * (10**6)
        return int_size // 8 if size.endswith("b") else int_size
    if size.upper().endswith("KB"):
        int_size = int(size[:-2]) * (10**3)
        return int_size // 8 if size.endswith("b") else int_size
    raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")


def dtype_byte_size(dtype: torch.dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
    elif dtype == CustomDtype.INT4:
        return 1 / 2
    elif dtype == CustomDtype.FP8:
        return 1
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]:
    """
    Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
    example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
    guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
    non-overlapping lifetimes may have the same id.
    """
    _SIZE = {
        torch.int64: 8,
        torch.float32: 4,
        torch.int32: 4,
        torch.bfloat16: 2,
        torch.float16: 2,
        torch.int16: 2,
        torch.uint8: 1,
        torch.int8: 1,
        torch.bool: 1,
        torch.float64: 8,
    }
    try:
        storage_ptr = tensor.untyped_storage().data_ptr()
        storage_size = tensor.untyped_storage().nbytes()
    except Exception:
        # Fallback for torch==1.10
        try:
            storage_ptr = tensor.storage().data_ptr()
            storage_size = tensor.storage().size() * _SIZE[tensor.dtype]
        except NotImplementedError:
            # Fallback for meta storage
            storage_ptr = 0
            # On torch >=2.0 this is the tensor size
            storage_size = tensor.nelement() * _SIZE[tensor.dtype]

    return tensor.device, storage_ptr, storage_size


def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = [{}]
    last_block_size = 0
    total_size = 0
    storage_id_to_block = {}

    for key, weight in state_dict.items():
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if last_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append({})
            last_block_size = 0

        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
        total_size += weight_size
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
        return {weights_name: sharded_state_dicts[0]}, None

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


def set_module_tensor_to_device(
    module: nn.Module,
    tensor_name: str,
    device: Union[int, str, torch.device],
    value: Optional[torch.Tensor] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    fp16_statistics: Optional[torch.HalfTensor] = None,
):
    """
    A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
    `param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function).

    Args:
        module (`torch.nn.Module`):
            The module in which the tensor we want to move lives.
        param_name (`str`):
            The full name of the parameter/buffer.
        device (`int`, `str` or `torch.device`):
            The device on which to set the tensor.
        value (`torch.Tensor`, *optional*):
            The value of the tensor (useful when going from the meta device to any other device).
        dtype (`torch.dtype`, *optional*):
            If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to
            the dtype of the existing parameter in the model.
        fp16_statistics (`torch.HalfTensor`, *optional*):
            The list of fp16 statistics to set on the module, used for 8 bit model serialization.
    """
    # Recurse if needed
    if "." in tensor_name:
        splits = tensor_name.split(".")
        for split in splits[:-1]:
            new_module = getattr(module, split)
            if new_module is None:
                raise ValueError(f"{module} has no attribute {split}.")
            module = new_module
        tensor_name = splits[-1]

    if tensor_name not in module._parameters and tensor_name not in module._buffers:
        raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
    is_buffer = tensor_name in module._buffers
    old_value = getattr(module, tensor_name)

    if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
        raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")

    if value is not None:
        if dtype is None:
            # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
            value = value.to(old_value.dtype)
        elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            value = value.to(dtype)

    param = module._parameters[tensor_name] if tensor_name in module._parameters else None
    param_cls = type(param)

    device_quantization = None
    with torch.no_grad():
        # leave it on cpu first before moving them to cuda
        # # fix the case where the device is meta, we don't want to put it on cpu because there is no data =0
        if (
            param is not None
            and param.device.type != "cuda"
            and torch.device(device).type == "cuda"
            and param_cls.__name__ in ["Int8Params", "FP4Params"]
        ):
            device_quantization = device
            device = "cpu"
        if value is None:
            new_value = old_value.to(device)
            if dtype is not None and device in ["meta", torch.device("meta")]:
                new_value = new_value.to(dtype)
                if not is_buffer:
                    module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad)
        elif isinstance(value, torch.Tensor):
            new_value = value.to(device)
        else:
            new_value = torch.tensor(value, device=device)
        if device_quantization is not None:
            device = device_quantization
        if is_buffer:
            module._buffers[tensor_name] = new_value
        elif value is not None or torch.device(device) != module._parameters[tensor_name].device:
            param_cls = type(module._parameters[tensor_name])
            kwargs = module._parameters[tensor_name].__dict__
            if param_cls.__name__ in ["Int8Params", "FP4Params"]:
                if param_cls.__name__ == "Int8Params" and new_value.dtype == torch.float32:
                    # downcast to fp16 if any - needed for 8bit serialization
                    new_value = new_value.to(torch.float16)
                # quantize module that are going to stay on the cpu so that we offload quantized weights
                if device == "cpu" and param_cls.__name__ == "Int8Params":
                    new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(0).to("cpu")
                    new_value.CB = new_value.CB.to("cpu")
                    new_value.SCB = new_value.SCB.to("cpu")
                else:
                    new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device)
            else:
                new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device)
            module._parameters[tensor_name] = new_value
            if fp16_statistics is not None:
                setattr(module._parameters[tensor_name], "SCB", fp16_statistics.to(device))
                del fp16_statistics
            # as we put the weight to meta, it doesn't have SCB attr anymore. make sure that it is not a meta weight
            if (
                module.__class__.__name__ == "Linear8bitLt"
                and getattr(module.weight, "SCB", None) is None
                and str(module.weight.device) != "meta"
            ):
                # quantize only if necessary
                device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
                if not getattr(module.weight, "SCB", None) and device_index is not None:
                    if module.bias is not None and module.bias.device.type != "meta":
                        # if a bias exists, we need to wait until the bias is set on the correct device
                        module = module.cuda(device_index)
                    elif module.bias is None:
                        # if no bias exists, we can quantize right away
                        module = module.cuda(device_index)
            elif module.__class__.__name__ == "Linear4bit" and getattr(module.weight, "quant_state", None) is None:
                # quantize only if necessary
                device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
                if not getattr(module.weight, "quant_state", None) and device_index is not None:
                    module.weight = module.weight.cuda(device_index)
    # clean pre and post foward hook
    torch.cuda.empty_cache()


def named_module_tensors(module: nn.Module, include_buffers: bool = True, recurse: bool = False):
    """
    A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True`
    it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        include_buffer (`bool`, *optional*, defaults to `True`):
            Whether or not to include the buffers in the result.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    for named_parameter in module.named_parameters(recurse=recurse):
        yield named_parameter

    if include_buffers:
        for named_buffer in module.named_buffers(recurse=recurse):
            yield named_buffer


class FindTiedParametersResult(list):
    """
    This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not
    a list or on the `values` method as in the future this will be removed.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def values(self):
        # TODO: at the next Transformers release (4.28.0) issue a deprecation warning here.
        return sum([x[1:] for x in self], [])


def check_tied_parameters_in_config(model: nn.Module):
    """
    Check if there is any indication in the given model that some weights should be tied.

    Args:
        model (`torch.nn.Module`): The model to inspect

    Returns:
        bool: True if the model needs to have tied weights
    """

    # based on model.tie_weights() method
    has_tied_word_embedding = False
    has_tied_encoder_decoder = False
    has_tied_module = False

    if "PreTrainedModel" in [c.__name__ for c in inspect.getmro(model.__class__)]:
        has_tied_word_embedding = (
            hasattr(model, "config")
            and getattr(model.config, "tie_word_embeddings", False)
            and model.get_output_embeddings()
        )
        has_tied_encoder_decoder = (
            hasattr(model, "config")
            and getattr(model.config, "is_encoder_decoder", False)
            and getattr(model.config, "tie_encoder_decoder", False)
        )
        has_tied_module = any(hasattr(module, "_tie_weights") for module in model.modules())

    return any([has_tied_word_embedding, has_tied_encoder_decoder, has_tied_module])


def _get_param_device(param, device_map):
    if param in device_map:
        return device_map[param]
    parent_param = ".".join(param.split(".")[:-1])
    if parent_param == param:
        raise ValueError(f"The `device_map` does not contain the module {param}.")
    else:
        return _get_param_device(parent_param, device_map)


def check_tied_parameters_on_same_device(tied_params, device_map):
    """
    Check if tied parameters are on the same device

    Args:
        tied_params (`List[List[str]]`):
            A list of lists of parameter names being all tied together.

        device_map (`Dict[str, Union[int, str, torch.device]]`):
            A map that specifies where each submodule should go.

    """
    for tie_param in tied_params:
        tie_param_devices = {}
        for param in tie_param:
            tie_param_devices[param] = _get_param_device(param, device_map)
        if len(set(tie_param_devices.values())) > 1:
            logger.warn(
                f"Tied parameters are on different devices: {tie_param_devices}. "
                "Please modify your custom device map or set `device_map='auto'`. "
            )


def find_tied_parameters(model: nn.Module, **kwargs):
    """
    Find the tied parameters in a given model.

    <Tip warning={true}>

    The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore
    them.

    </Tip>

    Args:
        model (`torch.nn.Module`): The model to inspect.

    Returns:
        List[List[str]]: A list of lists of parameter names being all tied together.

    Example:

    ```py
    >>> from collections import OrderedDict
    >>> import torch.nn as nn

    >>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))]))
    >>> model.linear2.weight = model.linear1.weight
    >>> find_tied_parameters(model)
    [['linear1.weight', 'linear2.weight']]
    ```
    """
    # Initialize result and named_parameters before recursing.
    named_parameters = kwargs.get("named_parameters", None)
    prefix = kwargs.get("prefix", "")
    result = kwargs.get("result", {})

    if named_parameters is None:
        named_parameters = {n: p for n, p in model.named_parameters()}
    else:
        # A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters`
        # of the submodule it belongs to. So while recursing we track the names that are not in the initial
        # `named_parameters`.
        for name, parameter in model.named_parameters():
            full_name = name if prefix == "" else f"{prefix}.{name}"
            if full_name not in named_parameters:
                # When we find one, it has to be one of the existing parameters.
                for new_name, new_param in named_parameters.items():
                    if new_param is parameter:
                        if new_name not in result:
                            result[new_name] = []
                        result[new_name].append(full_name)

    # Once we have treated direct parameters, we move to the child modules.
    for name, child in model.named_children():
        child_name = name if prefix == "" else f"{prefix}.{name}"
        find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result)

    return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()])


def retie_parameters(model, tied_params):
    """
    Reties tied parameters in a given model if the link was broken (for instance when adding hooks).

    Args:
        model (`torch.nn.Module`):
            The model in which to retie parameters.
        tied_params (`List[List[str]]`):
            A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`.
    """
    for tied_group in tied_params:
        param_to_tie = None
        # First iteration of the loop will set param_to_tie, next ones will tie it to the others
        for param_name in tied_group:
            module = model
            splits = param_name.split(".")
            for split in splits[:-1]:
                module = getattr(module, split)
            if param_to_tie is None:
                param_to_tie = getattr(module, splits[-1])
            else:
                setattr(module, splits[-1], param_to_tie)


def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype:
    """
    Just does torch.dtype(dtype) if necessary.
    """
    if isinstance(dtype, str):
        # We accept "torch.float16" or just "float16"
        dtype = dtype.replace("torch.", "")
        dtype = getattr(torch, dtype)
    return dtype


def compute_module_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model.
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)
    for name, tensor in named_module_tensors(model, recurse=True):
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


def get_max_layer_size(
    modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str]
):
    """
    Utility function that will scan a list of named modules and return the maximum size used by one full layer. The
    definition of a layer being:
    - a module with no direct children (just parameters and buffers)
    - a module whose class name is in the list `no_split_module_classes`

    Args:
        modules (`List[Tuple[str, torch.nn.Module]]`):
            The list of named modules where we want to determine the maximum layer size.
        module_sizes (`Dict[str, int]`):
            A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`).
        no_split_module_classes (`List[str]`):
            A list of class names for layers we don't want to be split.

    Returns:
        `Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size.
    """
    max_size = 0
    layer_names = []
    modules_to_treat = modules.copy()
    while len(modules_to_treat) > 0:
        module_name, module = modules_to_treat.pop(0)
        modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else []
        if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
            # No splitting this one so we compare to the max_size
            size = module_sizes[module_name]
            if size > max_size:
                max_size = size
                layer_names = [module_name]
            elif size == max_size:
                layer_names.append(module_name)
        else:
            modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat
    return max_size, layer_names


def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None):
    """
    Get the maximum memory available if nothing is passed, converts string to int otherwise.
    """
    import psutil

    if max_memory is None:
        if not (torch.cuda.is_available() or is_xpu_available()):
            max_memory = {}

        else:
            # Make sure CUDA is initialized on each GPU to have the right memory info.
            if not is_xpu_available():
                for i in range(torch.cuda.device_count()):
                    _ = torch.tensor([0], device=i)
                max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())}
            else:
                for i in range(torch.xpu.device_count()):
                    _ = torch.tensor(0, device=torch.device("xpu", i))
                max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())}
        # allocate everything in the mps device as the RAM is shared
        if is_mps_available():
            max_memory["mps"] = psutil.virtual_memory().available
        else:
            max_memory["cpu"] = psutil.virtual_memory().available
        return max_memory

    for key in max_memory:
        if isinstance(max_memory[key], str):
            max_memory[key] = convert_file_size_to_int(max_memory[key])
    return max_memory


def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""):
    """
    Cleans a device_map by grouping all submodules that go on the same device together.
    """
    # Get the value of the current module and if there is only one split across several keys, regroup it.
    prefix = "" if module_name == "" else f"{module_name}."
    values = [v for k, v in device_map.items() if k.startswith(prefix)]
    if len(set(values)) == 1 and len(values) > 1:
        for k in [k for k in device_map if k.startswith(prefix)]:
            del device_map[k]
        device_map[module_name] = values[0]

    # Recurse over the children
    children_modules = [k for k in device_map.keys() if k.startswith(prefix) and len(k) > len(module_name)]
    idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1
    children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules)
    for child in children_modules:
        clean_device_map(device_map, module_name=child)

    return device_map


def load_offloaded_weights(model, index, offload_folder):
    """
    Loads the weights from the offload folder into the model.

    Args:
        model (`torch.nn.Module`):
            The model to load the weights into.
        index (`dict`):
            A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the
            model.
        offload_folder (`str`):
            The folder where the offloaded weights are stored.
    """
    if index is None or len(index) == 0:
        # Nothing to do
        return
    for param_name, metadata in index.items():
        if "SCB" in param_name:
            continue
        fp16_statistics = None
        if "weight" in param_name and param_name.replace("weight", "SCB") in index.keys():
            weight_name = param_name.replace("weight", "SCB")
            fp16_statistics = load_offloaded_weight(
                os.path.join(offload_folder, f"{weight_name}.dat"), index[weight_name]
            )
        tensor_file = os.path.join(offload_folder, f"{param_name}.dat")
        weight = load_offloaded_weight(tensor_file, metadata)
        set_module_tensor_to_device(model, param_name, "cpu", value=weight, fp16_statistics=fp16_statistics)


def get_balanced_memory(
    model: nn.Module,
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
    no_split_module_classes: Optional[List[str]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
    low_zero: bool = False,
):
    """
    Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU.

    <Tip>

    All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
    meta device (as it would if initialized within the `init_empty_weights` context manager).

    </Tip>

    Args:
        model (`torch.nn.Module`):
            The model to analyze.
        max_memory (`Dict`, *optional*):
            A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
        no_split_module_classes (`List[str]`, *optional*):
            A list of layer class names that should never be split across device (for instance any layer that has a
            residual connection).
        dtype (`str` or `torch.dtype`, *optional*):
            If provided, the weights will be converted to that type when loaded.
        special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
            If provided, special dtypes to consider for some specific weights (will override dtype used as default for
            all weights).
        low_zero (`bool`, *optional*):
            Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the
            Transformers generate function).
    """
    # Get default / clean up max_memory
    max_memory = get_max_memory(max_memory)

    if not (torch.cuda.is_available() or is_xpu_available()) or is_mps_available():
        return max_memory

    if not is_xpu_available():
        num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
    else:
        num_devices = len(
            [
                d
                for d in max_memory
                if (torch.device(d).type == "xpu" or torch.xpu.get_device_properties(d).dev_type == "gpu")
                and max_memory[d] > 0
            ]
        )

    if num_devices == 1:
        # We cannot do low_zero on just one GPU
        low_zero = False

    module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
    per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices)

    # We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get
    # slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to
    # add which is the biggest of:
    # - the size of no split block (if applicable)
    # - the mean of the layer sizes
    if no_split_module_classes is None:
        no_split_module_classes = []
    elif not isinstance(no_split_module_classes, (list, tuple)):
        no_split_module_classes = [no_split_module_classes]

    # Identify the size of the no_split_block modules
    if len(no_split_module_classes) > 0:
        no_split_children = {}
        for name, size in module_sizes.items():
            if name == "":
                continue
            submodule = model
            for submodule_name in name.split("."):
                submodule = getattr(submodule, submodule_name)
            class_name = submodule.__class__.__name__
            if class_name in no_split_module_classes and class_name not in no_split_children:
                no_split_children[class_name] = size

            if set(no_split_children.keys()) == set(no_split_module_classes):
                break
        buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0
    else:
        buffer = 0

    # Compute mean of final modules. In the first dict of module sizes, leaves are the parameters
    leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
    module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves}
    # Once removed, leaves are the final modules.
    leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
    mean_leaves = int(sum([module_sizes[n] for n in leaves]) / max(len(leaves), 1))
    buffer = int(1.25 * max(buffer, mean_leaves))
    per_gpu += buffer

    max_memory = get_max_memory(max_memory)
    last_gpu = max(i for i in max_memory if isinstance(i, int) and max_memory[i] > 0)
    # The last device is left with max_memory just in case the buffer is not enough.
    for i in range(last_gpu):
        max_memory[i] = min(max_memory[0] if low_zero and i == 0 else per_gpu, max_memory[i])

    if low_zero:
        min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)]))
        max_memory[0] = min(min_zero, max_memory[0])

    return max_memory


def infer_auto_device_map(
    model: nn.Module,
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
    no_split_module_classes: Optional[List[str]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None,
    verbose: bool = False,
):
    """
    Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk,
    such that:
    - we don't exceed the memory available of any of the GPU.
    - if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that
      has the largest size.
    - if offload to the CPU is needed,we don't exceed the RAM available on the CPU.
    - if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk
      that has the largest size.

    <Tip>

    All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
    meta device (as it would if initialized within the `init_empty_weights` context manager).

    </Tip>

    Args:
        model (`torch.nn.Module`):
            The model to analyze.
        max_memory (`Dict`, *optional*):
            A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
        no_split_module_classes (`List[str]`, *optional*):
            A list of layer class names that should never be split across device (for instance any layer that has a
            residual connection).
        dtype (`str` or `torch.dtype`, *optional*):
            If provided, the weights will be converted to that type when loaded.
        special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
            If provided, special dtypes to consider for some specific weights (will override dtype used as default for
            all weights).
        verbose (`bool`, *optional*, defaults to `False`):
            Whether or not to provide debugging statements as the function builds the device_map.
    """
    # Get default / clean up max_memory
    max_memory = get_max_memory(max_memory)
    if no_split_module_classes is None:
        no_split_module_classes = []
    elif not isinstance(no_split_module_classes, (list, tuple)):
        no_split_module_classes = [no_split_module_classes]

    devices = list(max_memory.keys())
    gpus = [device for device in devices if device != "cpu"]
    if "disk" not in devices:
        devices.append("disk")

    # Devices that need to keep space for a potential offloaded layer.
    if "mps" in gpus:
        main_devices = ["mps"]
    elif len(gpus) > 0:
        main_devices = [gpus[0], "cpu"]
    else:
        main_devices = ["cpu"]

    module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
    tied_parameters = find_tied_parameters(model)

    if check_tied_parameters_in_config(model) and len(tied_parameters) == 0:
        logger.warn(
            "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
        )

    device_map = {}
    current_device = 0
    current_memory_used = 0

    # Direct submodules and parameters
    modules_to_treat = (
        list(model.named_parameters(recurse=False))
        + list(model.named_children())
        + list(model.named_buffers(recurse=False))
    )
    # Initialize maximum largest layer, to know which space to keep in memory
    max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes)

    # Ready ? This is going to be a bit messy.
    while len(modules_to_treat) > 0:
        name, module = modules_to_treat.pop(0)
        if verbose:
            print(f"\nTreating module {name}.")
        # Max size in the remaining layers may have changed since we took one, so we maybe update it.
        max_layer_names = [n for n in max_layer_names if n != name and not n.startswith(name + ".")]
        if len(max_layer_names) == 0:
            max_layer_size, max_layer_names = get_max_layer_size(
                [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
                module_sizes,
                no_split_module_classes,
            )
        # Assess size needed
        module_size = module_sizes[name]

        # We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module
        # and the other is not.
        tied_param_goups = [
            tied_group
            for tied_group in tied_parameters
            if any(name in k for k in tied_group) and not all(name in k for k in tied_group)
        ]
        if verbose and len(tied_param_goups) > 0:
            print(f"  Found the relevant tied param groups {tied_param_goups}")
        # Then we keep track of all the parameters that are tied to the current module, but not in the current module
        tied_params = sum([[p for p in tied_group if name not in p] for tied_group in tied_param_goups], [])
        if verbose and len(tied_params) > 0:
            print(f"  So those parameters need to be taken into account {tied_params}")

        device = devices[current_device]
        current_max_size = max_memory[device] if device != "disk" else None
        # Reduce max size available by the largest layer.
        if devices[current_device] in main_devices:
            current_max_size = current_max_size - max_layer_size
        # Case 1 -> We're too big!
        if current_max_size is not None and current_memory_used + module_size > current_max_size:
            # Split or not split?
            modules_children = [] if isinstance(module, nn.Parameter) else list(module.named_children())
            if verbose:
                print(
                    f"Not enough space on {devices[current_device]} to put {name} (space available "
                    f"{current_max_size-current_memory_used}, module size {module_size})."
                )
            if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
                # -> no split, we go to the next device
                if verbose:
                    print("This module cannot be split, going to the next device.")
                current_device += 1
                modules_to_treat = [(name, module)] + modules_to_treat
                current_memory_used = 0
            else:
                # -> split, we replace the module studied by its children + parameters
                if verbose:
                    print(f"Splitting {name}.")
                modules_children = list(module.named_parameters(recurse=False)) + modules_children
                modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat
                # Update the max layer size.
                max_layer_size, max_layer_names = get_max_layer_size(
                    [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
                    module_sizes,
                    no_split_module_classes,
                )

        # Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters.
        elif len(tied_params) > 0:
            # First locate all tied modules
            tied_module_names = []
            tied_modules = []
            for tied_param in tied_params:
                tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0]
                tied_module_names.append(modules_to_treat[tied_module_index][0])
                tied_modules.append(modules_to_treat[tied_module_index][1])
            if verbose:
                print(
                    f"  It looks like {name} is going to fit on {devices[current_device]} but we have tied "
                    f"parameters to account for.\n  - Names {tied_params}\n  - Module names {tied_module_names}"
                )

            # Let's see if it all fits first
            module_size_with_ties = module_size
            for tied_param, tied_module_name in zip(tied_params, tied_module_names):
                module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param]

            if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size:
                # We really really fit!
                if verbose:
                    print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.")
                current_memory_used += module_size_with_ties
                device_map[name] = devices[current_device]
                for tied_module_name in tied_module_names:
                    if tied_module_name in [m[0] for m in modules_to_treat]:
                        # The module may have been removed by a previous iteration of this loop.
                        tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][
                            0
                        ]
                        modules_to_treat.pop(tied_module_index)
                    device_map[tied_module_name] = devices[current_device]

            else:
                # We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it
                # smaller or do we need to go on the next device?
                if verbose:
                    print(
                        f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space "
                        f"available {current_max_size-current_memory_used}, needed size {module_size_with_ties})."
                    )
                split_happened = False
                for tied_module_name, tied_module in zip(tied_module_names, tied_modules):
                    tied_module_children = list(tied_module.named_children())
                    if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes:
                        # can't break this one.
                        continue

                    if verbose:
                        print(f"Splitting {tied_module_name}.")
                    tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children
                    tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children]
                    tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0]

                    modules_to_treat = (
                        [(name, module)]
                        + modules_to_treat[:tied_module_index]
                        + tied_module_children
                        + modules_to_treat[tied_module_index + 1 :]
                    )
                    # Update the max layer size.
                    max_layer_size, max_layer_names = get_max_layer_size(
                        [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
                        module_sizes,
                        no_split_module_classes,
                    )
                    split_happened = True
                    break

                if not split_happened:
                    # If the tied module is not split, we go to the next device
                    if verbose:
                        print("None of the tied module can be split, going to the next device.")
                    current_device += 1
                    modules_to_treat = [(name, module)] + modules_to_treat
                    current_memory_used = 0

        else:
            if verbose:
                if current_max_size is None:
                    print(f"Putting {name} (size={module_size}) on {devices[current_device]}.")
                else:
                    print(
                        f"Putting {name} (size={module_size}) on {devices[current_device]} "
                        f"(available={current_max_size-current_memory_used})."
                    )
            current_memory_used += module_size
            device_map[name] = devices[current_device]

    return clean_device_map(device_map)


def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]):
    """
    Checks a device map covers everything in a given model.

    Args:
        model (`torch.nn.Module`): The model to check the device map against.
        device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check.
    """
    all_model_tensors = [name for name, _ in model.state_dict().items()]
    for module_name in device_map.keys():
        if module_name == "":
            all_model_tensors.clear()
            break
        else:
            all_model_tensors = [
                name
                for name in all_model_tensors
                if not name == module_name and not name.startswith(module_name + ".")
            ]
    if len(all_model_tensors) > 0:
        non_covered_params = ", ".join(all_model_tensors)
        raise ValueError(
            f"The device_map provided does not give any device for the following parameters: {non_covered_params}"
        )


def load_state_dict(checkpoint_file, device_map=None):
    """
    Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the
    weights can be fast-loaded directly on the GPU.

    Args:
        checkpoint_file (`str`): The path to the checkpoint to load.
        device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
            A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
            name, once a given module name is inside, every submodule of it will be sent to the same device.
    """
    if checkpoint_file.endswith(".safetensors"):
        if not is_safetensors_available():
            raise ImportError(
                f"To load {checkpoint_file}, the `safetensors` library is necessary `pip install safetensors`."
            )
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
            weight_names = f.keys()

        if metadata is None:
            logger.warn(
                f"The safetensors archive passed at {checkpoint_file} does not contain metadata. "
                "Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata."
            )
            metadata = {"format": "pt"}

        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        elif metadata["format"] != "pt":
            raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.")
        if device_map is None:
            return safe_load_file(checkpoint_file)
        else:
            # if we only have one device we can load everything directly
            if len(set(device_map.values())) == 1:
                return safe_load_file(checkpoint_file, device=list(device_map.values())[0])

            devices = list(set(device_map.values()) - {"disk"})
            # cpu device should always exist as fallback option
            if "cpu" not in devices:
                devices.append("cpu")

            # For each device, get the weights that go there
            device_weights = {device: [] for device in devices}
            for module_name, device in device_map.items():
                if device in devices:
                    device_weights[device].extend(
                        [k for k in weight_names if k == module_name or k.startswith(module_name + ".")]
                    )

            # all weights that haven't defined a device should be loaded on CPU
            device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])])
            tensors = {}
            if is_tqdm_available():
                progress_bar = tqdm(
                    main_process_only=False,
                    total=sum([len(device_weights[device]) for device in devices]),
                    unit="w",
                    smoothing=0,
                    leave=False,
                )
            else:
                progress_bar = None
            for device in devices:
                with safe_open(checkpoint_file, framework="pt", device=device) as f:
                    for key in device_weights[device]:
                        if progress_bar is not None:
                            progress_bar.set_postfix(dev=device, refresh=False)
                            progress_bar.set_description(key)
                        tensors[key] = f.get_tensor(key)
                        if progress_bar is not None:
                            progress_bar.update()
            if progress_bar is not None:
                progress_bar.close()

            return tensors
    else:
        return torch.load(checkpoint_file, map_location=torch.device("cpu"))


def load_checkpoint_in_model(
    model: nn.Module,
    checkpoint: Union[str, os.PathLike],
    device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
    offload_folder: Optional[Union[str, os.PathLike]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    offload_state_dict: bool = False,
    offload_buffers: bool = False,
    keep_in_fp32_modules: List[str] = None,
    offload_8bit_bnb: bool = False,
):
    """
    Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
    loaded.

    <Tip warning={true}>

    Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To
    group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`].

    </Tip>

    Args:
        model (`torch.nn.Module`):
            The model in which we want to load a checkpoint.
        checkpoint (`str` or `os.PathLike`):
            The folder checkpoint to load. It can be:
            - a path to a file containing a whole model state dict
            - a path to a `.json` file containing the index to a sharded checkpoint
            - a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
            - a path to a folder containing a unique pytorch_model.bin file.
        device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
            A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
            name, once a given module name is inside, every submodule of it will be sent to the same device.
        offload_folder (`str` or `os.PathLike`, *optional*):
            If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
        dtype (`str` or `torch.dtype`, *optional*):
            If provided, the weights will be converted to that type when loaded.
        offload_state_dict (`bool`, *optional*, defaults to `False`):
            If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
            the weight of the CPU state dict + the biggest shard does not fit.
        offload_buffers (`bool`, *optional*, defaults to `False`):
            Whether or not to include the buffers in the weights offloaded to disk.
        keep_in_fp32_modules(`List[str]`, *optional*):
            A list of the modules that we keep in `torch.float32` dtype.
        offload_8bit_bnb (`bool`, *optional*):
            Whether or not to enable offload of 8-bit modules on cpu/disk.

    """
    if offload_8bit_bnb:
        from .bnb import quantize_and_offload_8bit

    tied_params = find_tied_parameters(model)

    if check_tied_parameters_in_config(model) and len(tied_params) == 0:
        logger.warn(
            "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
        )

    check_tied_parameters_on_same_device(tied_params, device_map)

    if offload_folder is None and device_map is not None and "disk" in device_map.values():
        raise ValueError(
            "At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`."
        )
    elif offload_folder is not None and device_map is not None and "disk" in device_map.values():
        os.makedirs(offload_folder, exist_ok=True)

    if isinstance(dtype, str):
        # We accept "torch.float16" or just "float16"
        dtype = dtype.replace("torch.", "")
        dtype = getattr(torch, dtype)

    checkpoint_files = None
    index_filename = None
    if os.path.isfile(checkpoint):
        if str(checkpoint).endswith(".json"):
            index_filename = checkpoint
        else:
            checkpoint_files = [checkpoint]
    elif os.path.isdir(checkpoint):
        # check if the whole state dict is present
        potential_state = [f for f in os.listdir(checkpoint) if f == WEIGHTS_NAME]
        if len(potential_state) == 1:
            checkpoint_files = [os.path.join(checkpoint, potential_state[0])]
        else:
            # otherwise check for sharded checkpoints
            potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")]
            if len(potential_index) == 0:
                raise ValueError(
                    f"{checkpoint} is not a folder containing a `.index.json` file or a {WEIGHTS_NAME} file"
                )
            elif len(potential_index) == 1:
                index_filename = os.path.join(checkpoint, potential_index[0])
            else:
                raise ValueError(
                    f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones."
                )
    else:
        raise ValueError(
            "`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded "
            f"checkpoint, or a folder containing a sharded checkpoint or the whole state dict, but got {checkpoint}."
        )

    if index_filename is not None:
        checkpoint_folder = os.path.split(index_filename)[0]
        with open(index_filename, "r") as f:
            index = json.loads(f.read())

        if "weight_map" in index:
            index = index["weight_map"]
        checkpoint_files = sorted(list(set(index.values())))
        checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files]

    # Logic for missing/unexepected keys goes here.

    offload_index = {}
    if offload_state_dict:
        state_dict_folder = tempfile.mkdtemp()
        state_dict_index = {}

    buffer_names = [name for name, _ in model.named_buffers()]
    for checkpoint_file in checkpoint_files:
        checkpoint = load_state_dict(checkpoint_file, device_map=device_map)
        if device_map is None:
            model.load_state_dict(checkpoint, strict=False)
        else:
            for param_name, param in checkpoint.items():
                # skip SCB parameter (for 8-bit serialization)
                if "SCB" in param_name:
                    continue

                module_name = param_name

                while len(module_name) > 0 and module_name not in device_map:
                    module_name = ".".join(module_name.split(".")[:-1])
                if module_name == "" and "" not in device_map:
                    # TODO: group all errors and raise at the end.
                    raise ValueError(f"{param_name} doesn't have any device set.")
                param_device = device_map[module_name]
                new_dtype = dtype
                if dtype is not None and torch.is_floating_point(param):
                    if keep_in_fp32_modules is not None and dtype == torch.float16:
                        proceed = False
                        for key in keep_in_fp32_modules:
                            if ((key in param_name) and (key + "." in param_name)) or key == param_name:
                                proceed = True
                                break
                        if proceed:
                            new_dtype = torch.float32

                if "weight" in param_name and param_name.replace("weight", "SCB") in checkpoint.keys():
                    if param.dtype == torch.int8:
                        fp16_statistics = checkpoint[param_name.replace("weight", "SCB")]
                else:
                    fp16_statistics = None

                if param_device == "disk":
                    if offload_buffers or param_name not in buffer_names:
                        if new_dtype is None:
                            new_dtype = param.dtype
                        if offload_8bit_bnb:
                            quantize_and_offload_8bit(
                                model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics
                            )
                            continue
                        else:
                            set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
                        offload_weight(param, param_name, offload_folder, index=offload_index)
                elif param_device == "cpu" and offload_state_dict:
                    if new_dtype is None:
                        new_dtype = param.dtype
                    if offload_8bit_bnb:
                        quantize_and_offload_8bit(
                            model, param, param_name, new_dtype, state_dict_folder, state_dict_index, fp16_statistics
                        )
                    else:
                        set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
                        offload_weight(param, param_name, state_dict_folder, index=state_dict_index)
                else:
                    set_module_tensor_to_device(
                        model,
                        param_name,
                        param_device,
                        value=param,
                        dtype=new_dtype,
                        fp16_statistics=fp16_statistics,
                    )

        # Force Python to clean up.
        del checkpoint
        gc.collect()

    save_offload_index(offload_index, offload_folder)

    # Load back offloaded state dict on CPU
    if offload_state_dict:
        load_offloaded_weights(model, state_dict_index, state_dict_folder)
        shutil.rmtree(state_dict_folder)

    retie_parameters(model, tied_params)


def get_mixed_precision_context_manager(native_amp: bool = False, cache_enabled: bool = True):
    """
    Return a context manager for autocasting mixed precision

    Args:
        native_amp (`bool`, *optional*, defaults to False):
            Whether mixed precision is actually enabled.
        cache_enabled (`bool`, *optional*, defaults to True):
            Whether the weight cache inside autocast should be enabled.
    """
    state = AcceleratorState()
    if native_amp:
        if state.mixed_precision == "fp16":
            return torch.autocast(device_type=state.device.type, dtype=torch.float16, cache_enabled=cache_enabled)
        elif state.mixed_precision == "bf16" and state.distributed_type in [
            DistributedType.NO,
            DistributedType.MULTI_CPU,
            DistributedType.MULTI_GPU,
            DistributedType.MULTI_XPU,
        ]:
            return torch.autocast(device_type=state.device.type, dtype=torch.bfloat16, cache_enabled=cache_enabled)
        else:
            return torch.autocast(device_type=state.device.type, cache_enabled=cache_enabled)
    else:
        return contextlib.nullcontext()