Spaces:
Sleeping
Sleeping
File size: 22,002 Bytes
82fea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A set of basic tensor ops compatible with tpu, gpu, and multigpu
"""
import pickle
from functools import update_wrapper
from typing import Any, Mapping
import torch
from ..state import PartialState
from .constants import CUDA_DISTRIBUTED_TYPES
from .dataclasses import DistributedType, TensorInformation
from .imports import is_torch_distributed_available, is_tpu_available
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
if is_torch_distributed_available():
from torch.distributed import ReduceOp
def is_torch_tensor(tensor):
return isinstance(tensor, torch.Tensor)
def is_torch_xpu_tensor(tensor):
return isinstance(
tensor,
torch.xpu.FloatTensor,
torch.xpu.ByteTensor,
torch.xpu.IntTensor,
torch.xpu.LongTensor,
torch.xpu.HalfTensor,
torch.xpu.DoubleTensor,
torch.xpu.BFloat16Tensor,
)
def is_tensor_information(tensor_info):
return isinstance(tensor_info, TensorInformation)
def is_namedtuple(data):
"""
Checks if `x` is a `namedtuple` or not. Can have false positives, but only if a user is trying to mimic a
`namedtuple` perfectly.
"""
data_type = type(data)
bases = data_type.__bases__
if len(bases) != 1 or bases[0] != tuple:
return False
fields = getattr(data_type, "_fields", None)
if not isinstance(fields, tuple):
return False
return all(isinstance(member, str) for member in fields)
def honor_type(obj, generator):
"""
Cast a generator to the same type as obj (list, tuple, or namedtuple)
"""
# Some objects may not be able to instantiate from a generator directly
if is_namedtuple(obj):
return type(obj)(*list(generator))
else:
return type(obj)(generator)
def recursively_apply(func, data, *args, test_type=is_torch_tensor, error_on_other_type=False, **kwargs):
"""
Recursively apply a function on a data structure that is a nested list/tuple/dictionary of a given base type.
Args:
func (`callable`):
The function to recursively apply.
data (nested list/tuple/dictionary of `main_type`):
The data on which to apply `func`
*args:
Positional arguments that will be passed to `func` when applied on the unpacked data.
main_type (`type`, *optional*, defaults to `torch.Tensor`):
The base type of the objects to which apply `func`.
error_on_other_type (`bool`, *optional*, defaults to `False`):
Whether to return an error or not if after unpacking `data`, we get on an object that is not of type
`main_type`. If `False`, the function will leave objects of types different than `main_type` unchanged.
**kwargs:
Keyword arguments that will be passed to `func` when applied on the unpacked data.
Returns:
The same data structure as `data` with `func` applied to every object of type `main_type`.
"""
if isinstance(data, (tuple, list)):
return honor_type(
data,
(
recursively_apply(
func, o, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
)
for o in data
),
)
elif isinstance(data, Mapping):
return type(data)(
{
k: recursively_apply(
func, v, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
)
for k, v in data.items()
}
)
elif test_type(data):
return func(data, *args, **kwargs)
elif error_on_other_type:
raise TypeError(
f"Unsupported types ({type(data)}) passed to `{func.__name__}`. Only nested list/tuple/dicts of "
f"objects that are valid for `{test_type.__name__}` should be passed."
)
return data
def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
"""
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to send to a given device.
device (`torch.device`):
The device to send the data to.
Returns:
The same data structure as `tensor` with all tensors sent to the proper device.
"""
if isinstance(tensor, (tuple, list)):
return honor_type(
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
)
elif isinstance(tensor, Mapping):
if isinstance(skip_keys, str):
skip_keys = [skip_keys]
elif skip_keys is None:
skip_keys = []
return type(tensor)(
{
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
for k, t in tensor.items()
}
)
elif hasattr(tensor, "to"):
try:
return tensor.to(device, non_blocking=non_blocking)
except TypeError: # .to() doesn't accept non_blocking as kwarg
return tensor.to(device)
else:
return tensor
def get_data_structure(data):
"""
Recursively gathers the information needed to rebuild a nested list/tuple/dictionary of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`):
The data to send to analyze.
Returns:
The same data structure as `data` with [`~utils.TensorInformation`] instead of tensors.
"""
def _get_data_structure(tensor):
return TensorInformation(shape=tensor.shape, dtype=tensor.dtype)
return recursively_apply(_get_data_structure, data)
def initialize_tensors(data_structure):
"""
Recursively initializes tensors from a nested list/tuple/dictionary of [`~utils.TensorInformation`].
Returns:
The same data structure as `data` with tensors instead of [`~utils.TensorInformation`].
"""
def _initialize_tensor(tensor_info):
return torch.empty(*tensor_info.shape, dtype=tensor_info.dtype)
return recursively_apply(_initialize_tensor, data_structure, test_type=is_tensor_information)
def find_batch_size(data):
"""
Recursively finds the batch size in a nested list/tuple/dictionary of lists of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
Returns:
`int`: The batch size.
"""
if isinstance(data, (tuple, list)):
return find_batch_size(data[0])
elif isinstance(data, Mapping):
for k in data.keys():
return find_batch_size(data[k])
elif not isinstance(data, torch.Tensor):
raise TypeError(f"Can only find the batch size of tensors but got {type(data)}.")
return data.shape[0]
def listify(data):
"""
Recursively finds tensors in a nested list/tuple/dictionary and converts them to a list of numbers.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to convert to regular numbers.
Returns:
The same data structure as `data` with lists of numbers instead of `torch.Tensor`.
"""
def _convert_to_list(tensor):
tensor = tensor.detach().cpu()
if tensor.dtype == torch.bfloat16:
# As of Numpy 1.21.4, NumPy does not support bfloat16 (see
# https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
# Until Numpy adds bfloat16, we must convert float32.
tensor = tensor.to(torch.float32)
return tensor.tolist()
return recursively_apply(_convert_to_list, data)
def _tpu_gather(tensor):
def _tpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
return xm.all_gather(tensor)
res = recursively_apply(_tpu_gather_one, tensor, error_on_other_type=True)
xm.mark_step()
return res
def _gpu_gather(tensor):
def _gpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
output_tensors = [torch.empty_like(tensor) for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensor)
return torch.cat(output_tensors, dim=0)
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
_cpu_gather = _gpu_gather
def gather(tensor):
"""
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
Returns:
The same data structure as `tensor` with all tensors sent to the proper device.
"""
if PartialState().distributed_type == DistributedType.TPU:
return _tpu_gather(tensor)
elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
return _gpu_gather(tensor)
elif PartialState().distributed_type in DistributedType.MULTI_NPU:
return _gpu_gather(tensor)
elif PartialState().distributed_type in DistributedType.MULTI_XPU:
return _gpu_gather(tensor)
elif PartialState().distributed_type == DistributedType.MULTI_CPU:
return _cpu_gather(tensor)
else:
return tensor
def _gpu_gather_object(object: Any):
output_objects = [None for _ in range(PartialState().num_processes)]
torch.distributed.all_gather_object(output_objects, object)
# all_gather_object returns a list of lists, so we need to flatten it
return [x for y in output_objects for x in y]
_cpu_gather_object = _gpu_gather_object
def gather_object(object: Any):
"""
Recursively gather object in a nested list/tuple/dictionary of objects from all devices.
Args:
object (nested list/tuple/dictionary of picklable object):
The data to gather.
Returns:
The same data structure as `object` with all the objects sent to every device.
"""
if PartialState().distributed_type == DistributedType.TPU:
raise NotImplementedError("gather objects in TPU is not supported")
elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
return _gpu_gather_object(object)
elif PartialState().distributed_type in DistributedType.MULTI_NPU:
return _gpu_gather_object(object)
elif PartialState().distributed_type in DistributedType.MULTI_XPU:
return _gpu_gather_object(object)
elif PartialState().distributed_type == DistributedType.MULTI_CPU:
return _cpu_gather_object(object)
else:
return object
def _gpu_broadcast(data, src=0):
def _gpu_broadcast_one(tensor, src=0):
torch.distributed.broadcast(tensor, src=src)
return tensor
return recursively_apply(_gpu_broadcast_one, data, error_on_other_type=True, src=src)
def _tpu_broadcast(tensor, src=0, name="broadcast tensor"):
if isinstance(tensor, (list, tuple)):
return honor_type(tensor, (_tpu_broadcast(t, name=f"{name}_{i}") for i, t in enumerate(tensor)))
elif isinstance(tensor, Mapping):
return type(tensor)({k: _tpu_broadcast(v, name=f"{name}_{k}") for k, v in tensor.items()})
return xm.mesh_reduce(name, tensor, lambda x: x[src])
def broadcast(tensor, from_process: int = 0):
"""
Recursively broadcast tensor in a nested list/tuple/dictionary of tensors to all devices.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
from_process (`int`, *optional*, defaults to 0):
The process from which to send the data
Returns:
The same data structure as `tensor` with all tensors broadcasted to the proper device.
"""
if PartialState().distributed_type == DistributedType.TPU:
return _tpu_broadcast(tensor, src=from_process, name="accelerate.utils.broadcast")
elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
return _gpu_broadcast(tensor, src=from_process)
elif PartialState().distributed_type in DistributedType.MULTI_NPU:
return _gpu_gather_object(object)
elif PartialState().distributed_type in DistributedType.MULTI_XPU:
return _gpu_broadcast(tensor, src=from_process)
elif PartialState().distributed_type == DistributedType.MULTI_CPU:
return _gpu_broadcast(tensor, src=from_process)
else:
return tensor
def broadcast_object_list(object_list, from_process: int = 0):
"""
Broadcast a list of picklable objects form one process to the others.
Args:
object_list (list of picklable objects):
The list of objects to broadcast. This list will be modified inplace.
from_process (`int`, *optional*, defaults to 0):
The process from which to send the data.
Returns:
The same list containing the objects from process 0.
"""
if PartialState().distributed_type == DistributedType.TPU:
for i, obj in enumerate(object_list):
object_list[i] = xm.mesh_reduce("accelerate.utils.broadcast_object_list", obj, lambda x: x[from_process])
elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
torch.distributed.broadcast_object_list(object_list, src=from_process)
elif PartialState().distributed_type in DistributedType.MULTI_NPU:
torch.distributed.broadcast_object_list(object_list, src=from_process)
elif PartialState().distributed_type in DistributedType.MULTI_XPU:
torch.distributed.broadcast_object_list(object_list, src=from_process)
elif PartialState().distributed_type == DistributedType.MULTI_CPU:
torch.distributed.broadcast_object_list(object_list, src=from_process)
return object_list
def slice_tensors(data, tensor_slice):
"""
Recursively takes a slice in a nested list/tuple/dictionary of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`):
The data to slice.
tensor_slice (`slice`):
The slice to take.
Returns:
The same data structure as `data` with all the tensors slices.
"""
def _slice_tensor(tensor, tensor_slice):
return tensor[tensor_slice]
return recursively_apply(_slice_tensor, data, tensor_slice)
def concatenate(data, dim=0):
"""
Recursively concatenate the tensors in a nested list/tuple/dictionary of lists of tensors with the same shape.
Args:
data (nested list/tuple/dictionary of lists of tensors `torch.Tensor`):
The data to concatenate.
dim (`int`, *optional*, defaults to 0):
The dimension on which to concatenate.
Returns:
The same data structure as `data` with all the tensors concatenated.
"""
if isinstance(data[0], (tuple, list)):
return honor_type(data[0], (concatenate([d[i] for d in data], dim=dim) for i in range(len(data[0]))))
elif isinstance(data[0], Mapping):
return type(data[0])({k: concatenate([d[k] for d in data], dim=dim) for k in data[0].keys()})
elif not isinstance(data[0], torch.Tensor):
raise TypeError(f"Can only concatenate tensors but got {type(data[0])}")
return torch.cat(data, dim=dim)
def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
"""
Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they
can safely be gathered.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
dim (`int`, *optional*, defaults to 0):
The dimension on which to pad.
pad_index (`int`, *optional*, defaults to 0):
The value with which to pad.
pad_first (`bool`, *optional*, defaults to `False`):
Whether to pad at the beginning or the end.
"""
def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
if dim >= len(tensor.shape):
return tensor
# Gather all sizes
size = torch.tensor(tensor.shape, device=tensor.device)[None]
sizes = gather(size).cpu()
# Then pad to the maximum size
max_size = max(s[dim] for s in sizes)
if max_size == tensor.shape[dim]:
return tensor
old_size = tensor.shape
new_size = list(old_size)
new_size[dim] = max_size
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
if pad_first:
indices = tuple(
slice(max_size - old_size[dim], max_size) if i == dim else slice(None) for i in range(len(new_size))
)
else:
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
new_tensor[indices] = tensor
return new_tensor
return recursively_apply(
_pad_across_processes, tensor, error_on_other_type=True, dim=dim, pad_index=pad_index, pad_first=pad_first
)
def reduce(tensor, reduction="mean"):
"""
Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the
mean of a given operation.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to reduce.
reduction (`str`, *optional*, defaults to `"mean"`):
A reduction method. Can be of "mean", "sum", or "none"
Returns:
The same data structure as `data` with all the tensors reduced.
"""
def _reduce_across_processes(tensor, reduction="mean"):
state = PartialState()
cloned_tensor = tensor.clone()
if state.distributed_type == DistributedType.NO:
return cloned_tensor
if state.distributed_type == DistributedType.TPU:
xm.all_reduce("sum", cloned_tensor)
elif state.distributed_type.value in CUDA_DISTRIBUTED_TYPES:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
elif state.distributed_type.value in DistributedType.MULTI_NPU:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
elif state.distributed_type.value in DistributedType.MULTI_XPU:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
elif state.distributed_type == DistributedType.MULTI_CPU:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
if reduction == "mean":
cloned_tensor /= state.num_processes
return cloned_tensor
return recursively_apply(_reduce_across_processes, tensor, error_on_other_type=True, reduction=reduction)
def convert_to_fp32(tensor):
"""
Recursively converts the elements nested list/tuple/dictionary of tensors in FP16/BF16 precision to FP32.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to convert from FP16/BF16 to FP32.
Returns:
The same data structure as `tensor` with all tensors that were in FP16/BF16 precision converted to FP32.
"""
def _convert_to_fp32(tensor):
return tensor.float()
def _is_fp16_bf16_tensor(tensor):
return hasattr(tensor, "dtype") and tensor.dtype in (torch.float16, torch.bfloat16)
return recursively_apply(_convert_to_fp32, tensor, test_type=_is_fp16_bf16_tensor)
class ConvertOutputsToFp32:
"""
Decorator to apply to a function outputing tensors (like a model forward pass) that ensures the outputs in FP16
precision will be convert back to FP32.
Args:
model_forward (`Callable`):
The function which outputs we want to treat.
Returns:
The same function as `model_forward` but with converted outputs.
"""
def __init__(self, model_forward):
self.model_forward = model_forward
update_wrapper(self, model_forward)
def __call__(self, *args, **kwargs):
return convert_to_fp32(self.model_forward(*args, **kwargs))
def __getstate__(self):
raise pickle.PicklingError(
"Cannot pickle a prepared model with automatic mixed precision, please unwrap the model with `Accelerator.unwrap_model(model)` before pickling it."
)
def convert_outputs_to_fp32(model_forward):
model_forward = ConvertOutputsToFp32(model_forward)
def forward(*args, **kwargs):
return model_forward(*args, **kwargs)
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
forward.__wrapped__ = model_forward
return forward
def find_device(data):
"""
Finds the device on which a nested dict/list/tuple of tensors lies (assuming they are all on the same device).
Args:
(nested list/tuple/dictionary of `torch.Tensor`): The data we want to know the device of.
"""
if isinstance(data, Mapping):
for obj in data.values():
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, (tuple, list)):
for obj in data:
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, torch.Tensor):
return data.device
|