File size: 22,002 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A set of basic tensor ops compatible with tpu, gpu, and multigpu
"""

import pickle
from functools import update_wrapper
from typing import Any, Mapping

import torch

from ..state import PartialState
from .constants import CUDA_DISTRIBUTED_TYPES
from .dataclasses import DistributedType, TensorInformation
from .imports import is_torch_distributed_available, is_tpu_available


if is_tpu_available(check_device=False):
    import torch_xla.core.xla_model as xm


if is_torch_distributed_available():
    from torch.distributed import ReduceOp


def is_torch_tensor(tensor):
    return isinstance(tensor, torch.Tensor)


def is_torch_xpu_tensor(tensor):
    return isinstance(
        tensor,
        torch.xpu.FloatTensor,
        torch.xpu.ByteTensor,
        torch.xpu.IntTensor,
        torch.xpu.LongTensor,
        torch.xpu.HalfTensor,
        torch.xpu.DoubleTensor,
        torch.xpu.BFloat16Tensor,
    )


def is_tensor_information(tensor_info):
    return isinstance(tensor_info, TensorInformation)


def is_namedtuple(data):
    """
    Checks if `x` is a `namedtuple` or not. Can have false positives, but only if a user is trying to mimic a
    `namedtuple` perfectly.
    """
    data_type = type(data)
    bases = data_type.__bases__
    if len(bases) != 1 or bases[0] != tuple:
        return False
    fields = getattr(data_type, "_fields", None)
    if not isinstance(fields, tuple):
        return False
    return all(isinstance(member, str) for member in fields)


def honor_type(obj, generator):
    """
    Cast a generator to the same type as obj (list, tuple, or namedtuple)
    """
    # Some objects may not be able to instantiate from a generator directly
    if is_namedtuple(obj):
        return type(obj)(*list(generator))
    else:
        return type(obj)(generator)


def recursively_apply(func, data, *args, test_type=is_torch_tensor, error_on_other_type=False, **kwargs):
    """
    Recursively apply a function on a data structure that is a nested list/tuple/dictionary of a given base type.

    Args:
        func (`callable`):
            The function to recursively apply.
        data (nested list/tuple/dictionary of `main_type`):
            The data on which to apply `func`
        *args:
            Positional arguments that will be passed to `func` when applied on the unpacked data.
        main_type (`type`, *optional*, defaults to `torch.Tensor`):
            The base type of the objects to which apply `func`.
        error_on_other_type (`bool`, *optional*, defaults to `False`):
            Whether to return an error or not if after unpacking `data`, we get on an object that is not of type
            `main_type`. If `False`, the function will leave objects of types different than `main_type` unchanged.
        **kwargs:
            Keyword arguments that will be passed to `func` when applied on the unpacked data.

    Returns:
        The same data structure as `data` with `func` applied to every object of type `main_type`.
    """
    if isinstance(data, (tuple, list)):
        return honor_type(
            data,
            (
                recursively_apply(
                    func, o, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
                )
                for o in data
            ),
        )
    elif isinstance(data, Mapping):
        return type(data)(
            {
                k: recursively_apply(
                    func, v, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
                )
                for k, v in data.items()
            }
        )
    elif test_type(data):
        return func(data, *args, **kwargs)
    elif error_on_other_type:
        raise TypeError(
            f"Unsupported types ({type(data)}) passed to `{func.__name__}`. Only nested list/tuple/dicts of "
            f"objects that are valid for `{test_type.__name__}` should be passed."
        )
    return data


def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
    """
    Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to send to a given device.
        device (`torch.device`):
            The device to send the data to.

    Returns:
        The same data structure as `tensor` with all tensors sent to the proper device.
    """
    if isinstance(tensor, (tuple, list)):
        return honor_type(
            tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
        )
    elif isinstance(tensor, Mapping):
        if isinstance(skip_keys, str):
            skip_keys = [skip_keys]
        elif skip_keys is None:
            skip_keys = []
        return type(tensor)(
            {
                k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
                for k, t in tensor.items()
            }
        )
    elif hasattr(tensor, "to"):
        try:
            return tensor.to(device, non_blocking=non_blocking)
        except TypeError:  # .to() doesn't accept non_blocking as kwarg
            return tensor.to(device)
    else:
        return tensor


def get_data_structure(data):
    """
    Recursively gathers the information needed to rebuild a nested list/tuple/dictionary of tensors.

    Args:
        data (nested list/tuple/dictionary of `torch.Tensor`):
            The data to send to analyze.

    Returns:
        The same data structure as `data` with [`~utils.TensorInformation`] instead of tensors.
    """

    def _get_data_structure(tensor):
        return TensorInformation(shape=tensor.shape, dtype=tensor.dtype)

    return recursively_apply(_get_data_structure, data)


def initialize_tensors(data_structure):
    """
    Recursively initializes tensors from a nested list/tuple/dictionary of [`~utils.TensorInformation`].

    Returns:
        The same data structure as `data` with tensors instead of [`~utils.TensorInformation`].
    """

    def _initialize_tensor(tensor_info):
        return torch.empty(*tensor_info.shape, dtype=tensor_info.dtype)

    return recursively_apply(_initialize_tensor, data_structure, test_type=is_tensor_information)


def find_batch_size(data):
    """
    Recursively finds the batch size in a nested list/tuple/dictionary of lists of tensors.

    Args:
        data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.

    Returns:
        `int`: The batch size.
    """
    if isinstance(data, (tuple, list)):
        return find_batch_size(data[0])
    elif isinstance(data, Mapping):
        for k in data.keys():
            return find_batch_size(data[k])
    elif not isinstance(data, torch.Tensor):
        raise TypeError(f"Can only find the batch size of tensors but got {type(data)}.")
    return data.shape[0]


def listify(data):
    """
    Recursively finds tensors in a nested list/tuple/dictionary and converts them to a list of numbers.

    Args:
        data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to convert to regular numbers.

    Returns:
        The same data structure as `data` with lists of numbers instead of `torch.Tensor`.
    """

    def _convert_to_list(tensor):
        tensor = tensor.detach().cpu()
        if tensor.dtype == torch.bfloat16:
            # As of Numpy 1.21.4, NumPy does not support bfloat16 (see
            # https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
            # Until Numpy adds bfloat16, we must convert float32.
            tensor = tensor.to(torch.float32)
        return tensor.tolist()

    return recursively_apply(_convert_to_list, data)


def _tpu_gather(tensor):
    def _tpu_gather_one(tensor):
        if tensor.ndim == 0:
            tensor = tensor.clone()[None]

        return xm.all_gather(tensor)

    res = recursively_apply(_tpu_gather_one, tensor, error_on_other_type=True)
    xm.mark_step()
    return res


def _gpu_gather(tensor):
    def _gpu_gather_one(tensor):
        if tensor.ndim == 0:
            tensor = tensor.clone()[None]
        output_tensors = [torch.empty_like(tensor) for _ in range(torch.distributed.get_world_size())]
        torch.distributed.all_gather(output_tensors, tensor)
        return torch.cat(output_tensors, dim=0)

    return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)


_cpu_gather = _gpu_gather


def gather(tensor):
    """
    Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to gather.

    Returns:
        The same data structure as `tensor` with all tensors sent to the proper device.
    """
    if PartialState().distributed_type == DistributedType.TPU:
        return _tpu_gather(tensor)
    elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
        return _gpu_gather(tensor)
    elif PartialState().distributed_type in DistributedType.MULTI_NPU:
        return _gpu_gather(tensor)
    elif PartialState().distributed_type in DistributedType.MULTI_XPU:
        return _gpu_gather(tensor)
    elif PartialState().distributed_type == DistributedType.MULTI_CPU:
        return _cpu_gather(tensor)
    else:
        return tensor


def _gpu_gather_object(object: Any):
    output_objects = [None for _ in range(PartialState().num_processes)]
    torch.distributed.all_gather_object(output_objects, object)
    # all_gather_object returns a list of lists, so we need to flatten it
    return [x for y in output_objects for x in y]


_cpu_gather_object = _gpu_gather_object


def gather_object(object: Any):
    """
    Recursively gather object in a nested list/tuple/dictionary of objects from all devices.

    Args:
        object (nested list/tuple/dictionary of picklable object):
            The data to gather.

    Returns:
        The same data structure as `object` with all the objects sent to every device.
    """
    if PartialState().distributed_type == DistributedType.TPU:
        raise NotImplementedError("gather objects in TPU is not supported")
    elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
        return _gpu_gather_object(object)
    elif PartialState().distributed_type in DistributedType.MULTI_NPU:
        return _gpu_gather_object(object)
    elif PartialState().distributed_type in DistributedType.MULTI_XPU:
        return _gpu_gather_object(object)
    elif PartialState().distributed_type == DistributedType.MULTI_CPU:
        return _cpu_gather_object(object)
    else:
        return object


def _gpu_broadcast(data, src=0):
    def _gpu_broadcast_one(tensor, src=0):
        torch.distributed.broadcast(tensor, src=src)
        return tensor

    return recursively_apply(_gpu_broadcast_one, data, error_on_other_type=True, src=src)


def _tpu_broadcast(tensor, src=0, name="broadcast tensor"):
    if isinstance(tensor, (list, tuple)):
        return honor_type(tensor, (_tpu_broadcast(t, name=f"{name}_{i}") for i, t in enumerate(tensor)))
    elif isinstance(tensor, Mapping):
        return type(tensor)({k: _tpu_broadcast(v, name=f"{name}_{k}") for k, v in tensor.items()})
    return xm.mesh_reduce(name, tensor, lambda x: x[src])


def broadcast(tensor, from_process: int = 0):
    """
    Recursively broadcast tensor in a nested list/tuple/dictionary of tensors to all devices.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to gather.
        from_process (`int`, *optional*, defaults to 0):
            The process from which to send the data

    Returns:
        The same data structure as `tensor` with all tensors broadcasted to the proper device.
    """
    if PartialState().distributed_type == DistributedType.TPU:
        return _tpu_broadcast(tensor, src=from_process, name="accelerate.utils.broadcast")
    elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
        return _gpu_broadcast(tensor, src=from_process)
    elif PartialState().distributed_type in DistributedType.MULTI_NPU:
        return _gpu_gather_object(object)
    elif PartialState().distributed_type in DistributedType.MULTI_XPU:
        return _gpu_broadcast(tensor, src=from_process)
    elif PartialState().distributed_type == DistributedType.MULTI_CPU:
        return _gpu_broadcast(tensor, src=from_process)
    else:
        return tensor


def broadcast_object_list(object_list, from_process: int = 0):
    """
    Broadcast a list of picklable objects form one process to the others.

    Args:
        object_list (list of picklable objects):
            The list of objects to broadcast. This list will be modified inplace.
        from_process (`int`, *optional*, defaults to 0):
            The process from which to send the data.

    Returns:
        The same list containing the objects from process 0.
    """
    if PartialState().distributed_type == DistributedType.TPU:
        for i, obj in enumerate(object_list):
            object_list[i] = xm.mesh_reduce("accelerate.utils.broadcast_object_list", obj, lambda x: x[from_process])
    elif PartialState().distributed_type in CUDA_DISTRIBUTED_TYPES:
        torch.distributed.broadcast_object_list(object_list, src=from_process)
    elif PartialState().distributed_type in DistributedType.MULTI_NPU:
        torch.distributed.broadcast_object_list(object_list, src=from_process)
    elif PartialState().distributed_type in DistributedType.MULTI_XPU:
        torch.distributed.broadcast_object_list(object_list, src=from_process)
    elif PartialState().distributed_type == DistributedType.MULTI_CPU:
        torch.distributed.broadcast_object_list(object_list, src=from_process)
    return object_list


def slice_tensors(data, tensor_slice):
    """
    Recursively takes a slice in a nested list/tuple/dictionary of tensors.

    Args:
        data (nested list/tuple/dictionary of `torch.Tensor`):
            The data to slice.
        tensor_slice (`slice`):
            The slice to take.

    Returns:
        The same data structure as `data` with all the tensors slices.
    """

    def _slice_tensor(tensor, tensor_slice):
        return tensor[tensor_slice]

    return recursively_apply(_slice_tensor, data, tensor_slice)


def concatenate(data, dim=0):
    """
    Recursively concatenate the tensors in a nested list/tuple/dictionary of lists of tensors with the same shape.

    Args:
        data (nested list/tuple/dictionary of lists of tensors `torch.Tensor`):
            The data to concatenate.
        dim (`int`, *optional*, defaults to 0):
            The dimension on which to concatenate.

    Returns:
        The same data structure as `data` with all the tensors concatenated.
    """
    if isinstance(data[0], (tuple, list)):
        return honor_type(data[0], (concatenate([d[i] for d in data], dim=dim) for i in range(len(data[0]))))
    elif isinstance(data[0], Mapping):
        return type(data[0])({k: concatenate([d[k] for d in data], dim=dim) for k in data[0].keys()})
    elif not isinstance(data[0], torch.Tensor):
        raise TypeError(f"Can only concatenate tensors but got {type(data[0])}")
    return torch.cat(data, dim=dim)


def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
    """
    Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they
    can safely be gathered.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to gather.
        dim (`int`, *optional*, defaults to 0):
            The dimension on which to pad.
        pad_index (`int`, *optional*, defaults to 0):
            The value with which to pad.
        pad_first (`bool`, *optional*, defaults to `False`):
            Whether to pad at the beginning or the end.
    """

    def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
        if dim >= len(tensor.shape):
            return tensor

        # Gather all sizes
        size = torch.tensor(tensor.shape, device=tensor.device)[None]
        sizes = gather(size).cpu()
        # Then pad to the maximum size
        max_size = max(s[dim] for s in sizes)
        if max_size == tensor.shape[dim]:
            return tensor

        old_size = tensor.shape
        new_size = list(old_size)
        new_size[dim] = max_size
        new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
        if pad_first:
            indices = tuple(
                slice(max_size - old_size[dim], max_size) if i == dim else slice(None) for i in range(len(new_size))
            )
        else:
            indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
        new_tensor[indices] = tensor
        return new_tensor

    return recursively_apply(
        _pad_across_processes, tensor, error_on_other_type=True, dim=dim, pad_index=pad_index, pad_first=pad_first
    )


def reduce(tensor, reduction="mean"):
    """
    Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the
    mean of a given operation.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to reduce.
        reduction (`str`, *optional*, defaults to `"mean"`):
            A reduction method. Can be of "mean", "sum", or "none"

    Returns:
        The same data structure as `data` with all the tensors reduced.
    """

    def _reduce_across_processes(tensor, reduction="mean"):
        state = PartialState()
        cloned_tensor = tensor.clone()
        if state.distributed_type == DistributedType.NO:
            return cloned_tensor
        if state.distributed_type == DistributedType.TPU:
            xm.all_reduce("sum", cloned_tensor)
        elif state.distributed_type.value in CUDA_DISTRIBUTED_TYPES:
            torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
        elif state.distributed_type.value in DistributedType.MULTI_NPU:
            torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
        elif state.distributed_type.value in DistributedType.MULTI_XPU:
            torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
        elif state.distributed_type == DistributedType.MULTI_CPU:
            torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
        if reduction == "mean":
            cloned_tensor /= state.num_processes
        return cloned_tensor

    return recursively_apply(_reduce_across_processes, tensor, error_on_other_type=True, reduction=reduction)


def convert_to_fp32(tensor):
    """
    Recursively converts the elements nested list/tuple/dictionary of tensors in FP16/BF16 precision to FP32.

    Args:
        tensor (nested list/tuple/dictionary of `torch.Tensor`):
            The data to convert from FP16/BF16 to FP32.

    Returns:
        The same data structure as `tensor` with all tensors that were in FP16/BF16 precision converted to FP32.
    """

    def _convert_to_fp32(tensor):
        return tensor.float()

    def _is_fp16_bf16_tensor(tensor):
        return hasattr(tensor, "dtype") and tensor.dtype in (torch.float16, torch.bfloat16)

    return recursively_apply(_convert_to_fp32, tensor, test_type=_is_fp16_bf16_tensor)


class ConvertOutputsToFp32:
    """
    Decorator to apply to a function outputing tensors (like a model forward pass) that ensures the outputs in FP16
    precision will be convert back to FP32.

    Args:
        model_forward (`Callable`):
            The function which outputs we want to treat.

    Returns:
        The same function as `model_forward` but with converted outputs.
    """

    def __init__(self, model_forward):
        self.model_forward = model_forward
        update_wrapper(self, model_forward)

    def __call__(self, *args, **kwargs):
        return convert_to_fp32(self.model_forward(*args, **kwargs))

    def __getstate__(self):
        raise pickle.PicklingError(
            "Cannot pickle a prepared model with automatic mixed precision, please unwrap the model with `Accelerator.unwrap_model(model)` before pickling it."
        )


def convert_outputs_to_fp32(model_forward):
    model_forward = ConvertOutputsToFp32(model_forward)

    def forward(*args, **kwargs):
        return model_forward(*args, **kwargs)

    # To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
    forward.__wrapped__ = model_forward

    return forward


def find_device(data):
    """
    Finds the device on which a nested dict/list/tuple of tensors lies (assuming they are all on the same device).

    Args:
        (nested list/tuple/dictionary of `torch.Tensor`): The data we want to know the device of.
    """
    if isinstance(data, Mapping):
        for obj in data.values():
            device = find_device(obj)
            if device is not None:
                return device
    elif isinstance(data, (tuple, list)):
        for obj in data:
            device = find_device(obj)
            if device is not None:
                return device
    elif isinstance(data, torch.Tensor):
        return data.device