File size: 19,136 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, TypeVar, Union, overload

import torch
import torch.nn.functional as F
from torch import Tensor, device, dtype, nn

import bitsandbytes as bnb
import bitsandbytes.functional
from bitsandbytes.autograd._functions import undo_layout, get_tile_inds
from bitsandbytes.optim import GlobalOptimManager
from bitsandbytes.utils import OutlierTracer, find_outlier_dims

T = TypeVar("T", bound="torch.nn.Module")


class StableEmbedding(torch.nn.Embedding):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        max_norm: Optional[float] = None,
        norm_type: float = 2.0,
        scale_grad_by_freq: bool = False,
        sparse: bool = False,
        _weight: Optional[Tensor] = None,
        device=None,
        dtype=None,
    ) -> None:
        super().__init__(
            num_embeddings,
            embedding_dim,
            padding_idx,
            max_norm,
            norm_type,
            scale_grad_by_freq,
            sparse,
            _weight,
            device,
            dtype,
        )
        self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
        GlobalOptimManager.get_instance().register_module_override(
            self, "weight", {"optim_bits": 32}
        )

    def reset_parameters(self) -> None:
        torch.nn.init.xavier_uniform_(self.weight)
        self._fill_padding_idx_with_zero()

    """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
        to make the Layer compatible with Pytorch < 1.9.
        This means that if this changes in future PyTorch releases this need to change too
        which is cumbersome. However, with this we can ensure compatibility with previous
        PyTorch releases.
    """

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with torch.no_grad():
                self.weight[self.padding_idx].fill_(0)

    def forward(self, input: Tensor) -> Tensor:
        emb = F.embedding(
            input,
            self.weight,
            self.padding_idx,
            self.max_norm,
            self.norm_type,
            self.scale_grad_by_freq,
            self.sparse,
        )

        # always apply layer norm in full precision
        emb = emb.to(torch.get_default_dtype())

        return self.norm(emb).to(self.weight.dtype)


class Embedding(torch.nn.Embedding):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        max_norm: Optional[float] = None,
        norm_type: float = 2.0,
        scale_grad_by_freq: bool = False,
        sparse: bool = False,
        _weight: Optional[Tensor] = None,
        device: Optional[device] = None,
    ) -> None:
        super().__init__(
            num_embeddings,
            embedding_dim,
            padding_idx,
            max_norm,
            norm_type,
            scale_grad_by_freq,
            sparse,
            _weight,
            device=device
        )
        GlobalOptimManager.get_instance().register_module_override(
            self, "weight", {"optim_bits": 32}
        )

    def reset_parameters(self) -> None:
        torch.nn.init.xavier_uniform_(self.weight)
        self._fill_padding_idx_with_zero()

    """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
        to make the Layer compatible with Pytorch < 1.9.
        This means that if this changes in future PyTorch releases this need to change too
        which is cumbersome. However, with this we can ensure compatibility with previous
        PyTorch releases.
    """

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with torch.no_grad():
                self.weight[self.padding_idx].fill_(0)

    def forward(self, input: Tensor) -> Tensor:
        emb = F.embedding(
            input,
            self.weight,
            self.padding_idx,
            self.max_norm,
            self.norm_type,
            self.scale_grad_by_freq,
            self.sparse,
        )

        return emb

class Params4bit(torch.nn.Parameter):
    def __new__(cls, data=None, requires_grad=True, quant_state=None, blocksize=64, compress_statistics=True, quant_type='fp4'):
        if data is None:
            data = torch.empty(0)

        self = torch.Tensor._make_subclass(cls, data, requires_grad)
        self.blocksize = blocksize
        self.compress_statistics = compress_statistics
        self.quant_type = quant_type
        self.quant_state = quant_state
        self.data = data
        return self

    def cuda(self, device):
        w = self.data.contiguous().half().cuda(device)
        w_4bit, quant_state = bnb.functional.quantize_4bit(w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type)
        self.data = w_4bit
        self.quant_state = quant_state

        return self

    @overload
    def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ...,) -> T:
        ...

    @overload
    def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
        ...

    @overload
    def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
        ...

    def to(self, *args, **kwargs):
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)

        if (device is not None and device.type == "cuda" and self.data.device.type == "cpu"):
            return self.cuda(device)
        else:
            s = self.quant_state
            if s is not None:
                # make sure the quantization state is on the right device
                s[0] = s[0].to(device)
                if self.compress_statistics:
                    # TODO: refactor this. This is a nightmare
                    # for 4-bit: 
                    # state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type]
                    # state2 = [absmax, input_shape, A.dtype, blocksize, None, quant_type]
                    #s[-2][0] = s[-2][0].to(device) # offset
                    #s[-2][1][0] = s[-2][1][0].to(device) # nested absmax

                    # for 8-bit
                    s[-3][0] = s[-3][0].to(device) # offset
                    s[-3][1][0] = s[-3][1][0].to(device) # nested quantiation state statitics
                    s[-3][1][1] = s[-3][1][1].to(device) # nested quantiation codebook
            new_param = Params4bit(super().to(device=device, dtype=dtype, non_blocking=non_blocking),
                                  requires_grad=self.requires_grad, quant_state=self.quant_state,
                                   blocksize=self.blocksize, compress_statistics=self.compress_statistics,
                                   quant_type=self.quant_type)

            return new_param

class Linear4bit(nn.Linear):
    def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_type='fp4',device=None):
        super().__init__(input_features, output_features, bias, device)
        self.weight = Params4bit(self.weight.data, requires_grad=False, compress_statistics=compress_statistics, quant_type=quant_type)
        self.compute_dtype = compute_dtype

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, 'quant_state', None) is None:
            print('FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.')
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state)

        out = out.to(inp_dtype)

        return out

class LinearFP4(Linear4bit):
    def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True,device=None):
        super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4', device)

class LinearNF4(Linear4bit):
    ''' Implements the NF4 data type.

        Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that
        is normalized into the range [-1, 1].

        For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314)

        Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in
        the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236.
    '''
    def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True,device=None):
        super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4', device)



class Int8Params(torch.nn.Parameter):
    def __new__(
        cls,
        data=None,
        requires_grad=True,
        has_fp16_weights=False,
        CB=None,
        SCB=None,
    ):
        cls.has_fp16_weights = has_fp16_weights
        cls.CB = None
        cls.SCB = None
        if data is None:
            data = torch.empty(0)
        return torch.Tensor._make_subclass(cls, data, requires_grad)

    def cuda(self, device):
        if self.has_fp16_weights:
            return super().cuda(device)
        else:
            # we store the 8-bit rows-major weight
            # we convert this weight to the turning/ampere weight during the first inference pass
            B = self.data.contiguous().half().cuda(device)
            CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
            del CBt
            del SCBt
            self.data = CB
            setattr(self, "CB", CB)
            setattr(self, "SCB", SCB)

        return self

    @overload
    def to(
        self: T,
        device: Optional[Union[int, device]] = ...,
        dtype: Optional[Union[dtype, str]] = ...,
        non_blocking: bool = ...,
    ) -> T:
        ...

    @overload
    def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
        ...

    @overload
    def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
        ...

    def to(self, *args, **kwargs):
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
            *args, **kwargs
        )

        if (
            device is not None
            and device.type == "cuda"
            and self.data.device.type == "cpu"
        ):
            return self.cuda(device)
        else:
            new_param = Int8Params(
                super().to(
                    device=device, dtype=dtype, non_blocking=non_blocking
                ),
                requires_grad=self.requires_grad,
                has_fp16_weights=self.has_fp16_weights,
            )
            new_param.CB = self.CB
            new_param.SCB = self.SCB

            return new_param


def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
    weight = state_dict.get(f"{prefix}weight")
    if weight is None:
        # if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing
        return
    weight_format = state_dict.pop(f"{prefix}weight_format", "row")

    if weight_format != "row":
        tile_indices = get_tile_inds(weight_format, weight.device)
        state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices)


class Linear8bitLt(nn.Linear):
    def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
                       memory_efficient_backward=False, threshold=0.0, index=None, device=None):
        super().__init__(input_features, output_features, bias, device)
        assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
        self._register_load_state_dict_pre_hook(maybe_rearrange_weight)

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super()._save_to_state_dict(destination, prefix, keep_vars)

        # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
        scb_name = "SCB"

        # case 1: .cuda was called, SCB is in self.weight
        param_from_weight = getattr(self.weight, scb_name)
        # case 2: self.init_8bit_state was called, SCB is in self.state
        param_from_state = getattr(self.state, scb_name)
        # case 3: SCB is in self.state, weight layout reordered after first forward()
        layout_reordered = self.state.CxB is not None

        key_name = prefix + f"{scb_name}"
        format_name = prefix + "weight_format"

        if not self.state.has_fp16_weights:
            if param_from_weight is not None:
                destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
                destination[format_name] = "row"
            elif param_from_state is not None and not layout_reordered:
                destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
                destination[format_name] = "row"
            elif param_from_state is not None:
                destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
                destination[format_name] = self.state.formatB

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
                                      error_msgs)
        unexpected_copy = list(unexpected_keys)

        for key in unexpected_copy:
            input_name = key[len(prefix):]
            if input_name == "SCB":
                if self.weight.SCB is None:
                    # buffers not yet initialized, can't access them directly without quantizing first
                    raise RuntimeError("Loading a quantized checkpoint into non-quantized Linear8bitLt is "
                                       "not supported. Please call module.cuda() before module.load_state_dict()")

                input_param = state_dict[key]
                self.weight.SCB.copy_(input_param)

                if self.state.SCB is not None:
                    self.state.SCB = self.weight.SCB

                unexpected_keys.remove(key)

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out


class OutlierAwareLinear(nn.Linear):
    def __init__(self, input_features, output_features, bias=True, device=None):
        super().__init__(input_features, output_features, bias, device)
        self.outlier_dim = None
        self.is_quantized = False

    def forward_with_outliers(self, x, outlier_idx):
        raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function')

    def quantize_weight(self, w, outlier_idx):
        raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function')

    def forward(self, x):
        if self.outlier_dim is None:
            tracer = OutlierTracer.get_instance()
            if not tracer.is_initialized():
                print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer')
            outlier_idx = tracer.get_outliers(self.weight)
            #print(outlier_idx, tracer.get_hvalue(self.weight))
            self.outlier_dim = outlier_idx

        if not self.is_quantized:
            w = self.quantize_weight(self.weight, self.outlier_dim)
            self.weight.data.copy_(w)
            self.is_quantized = True

class SwitchBackLinearBnb(nn.Linear):
    def __init__(
        self,
        input_features,
        output_features,
        bias=True,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
        device=None
    ):
        super().__init__(
            input_features, output_features, bias, device
        )
        self.state = bnb.MatmulLtState()
        self.index = index

        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
        )

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x):
        self.state.is_training = self.training

        if self.weight.CB is not None:
            self.init_8bit_state()

        out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias