File size: 9,843 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
import torch.nn as nn
import time
from functools import partial

from bitsandbytes.triton.triton_utils import is_triton_available

from bitsandbytes.triton.dequantize_rowwise import dequantize_rowwise
from bitsandbytes.triton.quantize_rowwise import quantize_rowwise
from bitsandbytes.triton.quantize_columnwise_and_transpose import quantize_columnwise_and_transpose
from bitsandbytes.triton.int8_matmul_rowwise_dequantize import int8_matmul_rowwise_dequantize
from bitsandbytes.triton.quantize_global import quantize_global, quantize_global_transpose
from bitsandbytes.triton.int8_matmul_mixed_dequanitze import int8_matmul_mixed_dequanitze


class _switchback_global(torch.autograd.Function):

    @staticmethod
    def forward(ctx, X_3D, W, bias):
        # reshape input to [N * L, D]
        X = X_3D.view(-1, X_3D.size(-1))

        # rowwise quantize for X, global quantize for W
        X_int8, state_X = quantize_rowwise(X)
        W_int8, state_W = quantize_global(W)

        # save for backward.
        ctx.save_for_backward = X, W

        # matmult, fused dequant and add bias
        # call "mixed" because we are mixing rowwise quantized and global quantized
        return int8_matmul_mixed_dequanitze(
            X_int8, W_int8.t(), state_X, state_W, bias
        ).view(*X_3D.size()[:-1], -1)

    @staticmethod
    def backward(ctx, G_3D):
        # reshape input to [N_out * L, D]
        G = G_3D.reshape(-1, G_3D.size(-1))

        grad_X = grad_W = grad_bias = None

        X, W = ctx.save_for_backward
        if ctx.needs_input_grad[0]:
            # rowwise quantize for G, global quantize for W
            # for W, we also fuse the transpose operation because only A @ B^T is supported
            # so we transpose once then call .t() in the matmul
            G_int8, state_G = quantize_rowwise(G)
            W_int8, state_W = quantize_global_transpose(W)
            grad_X = int8_matmul_mixed_dequanitze(G_int8, W_int8.t(), state_G, state_W, None).view(
                *G_3D.size()[:-1], -1
            )
        if ctx.needs_input_grad[1]:
            # backward pass uses standard weight grad
            grad_W = torch.matmul(G.t(), X.to(G.dtype))
        if ctx.needs_input_grad[2]:
            grad_bias = G.sum(dim=0)

        return grad_X, grad_W, grad_bias

class _switchback_vectorrize(torch.autograd.Function):

    @staticmethod
    def forward(ctx, X_3D, W, bias):
        # reshape input to [N * L, D]
        X = X_3D.view(-1, X_3D.size(-1))

        ctx.save_for_backward = X, W
        # rowwise quantize for X
        # columnwise quantize for W (first rowwise, transpose later)
        X_int8, state_X = quantize_rowwise(X)
        W_int8, state_W = quantize_rowwise(W)

        # matmult, fused dequant and add bias
        # call kernel which expects rowwise quantized X and W
        return int8_matmul_rowwise_dequantize(
            X_int8, W_int8.t(), state_X, state_W, bias
        ).view(*X_3D.size()[:-1], -1)

    @staticmethod
    def backward(ctx, G_3D):
        X, W = ctx.save_for_backward

        G = G_3D.reshape(-1, G_3D.size(-1))

        grad_X = grad_W = grad_bias = None

        if ctx.needs_input_grad[0]:
            # rowwise quantize for G, columnwise quantize for W and fused transpose
            # we call .t() for weight later because only A @ B^T is supported
            G_int8, state_G = quantize_rowwise(G)
            W_int8, state_W = quantize_columnwise_and_transpose(W)
            grad_X = int8_matmul_rowwise_dequantize(G_int8, W_int8.t(), state_G, state_W, None).view(
                *G_3D.size()[:-1], -1
            )
        if ctx.needs_input_grad[1]:
            # backward pass uses standard weight grad
            grad_W = torch.matmul(G.t(), X.to(G.dtype))
        if ctx.needs_input_grad[2]:
            grad_bias = G.sum(dim=0)

        return grad_X, grad_W, grad_bias

class _switchback_global_mem_efficient(torch.autograd.Function):

    @staticmethod
    def forward(ctx, X_3D, W, bias):
        # reshape input to [N * L, D]
        X = X_3D.view(-1, X_3D.size(-1))
        X_3D_sz = X_3D.size()

        # rowwise quantize for X, global quantize for W
        X_int8, state_X = quantize_rowwise(X)
        del X
        W_int8, state_W = quantize_global(W)

        # save for backward.
        ctx.save_for_backward = X_int8, state_X, W_int8, state_W

        # matmult, fused dequant and add bias
        # call "mixed" because we are mixing rowwise quantized and global quantized
        return int8_matmul_mixed_dequanitze(
            X_int8, W_int8.t(), state_X, state_W, bias
        ).view(*X_3D_sz[:-1], -1)

    @staticmethod
    def backward(ctx, G_3D):
        # reshape input to [N_out * L, D]
        G = G_3D.reshape(-1, G_3D.size(-1))
        G_3D_sz = G_3D.size()

        grad_X = grad_W = grad_bias = None

        X_int8, state_X, W_int8, state_W = ctx.save_for_backward
        if ctx.needs_input_grad[1]:
            real_X = dequantize_rowwise(X_int8, state_X)
            del X_int8
            grad_W = torch.matmul(G.t(), real_X.to(G.dtype))
            del real_X
        if ctx.needs_input_grad[2]:
            grad_bias = G.sum(dim=0)
        if ctx.needs_input_grad[0]:
            G_int8, state_G = quantize_rowwise(G)
            del G
            W_int8 = W_int8.t().contiguous()
            grad_X = int8_matmul_mixed_dequanitze(G_int8, W_int8.t(), state_G, state_W, None).view(
                *G_3D_sz[:-1], -1
            )

        return grad_X, grad_W, grad_bias

class SwitchBackLinear(nn.Linear):
    def __init__(
            self,
            in_features: int,
            out_features: int,
            bias: bool = True,
            device=None,
            dtype=None,
            vector_wise_quantization: bool = False,
            mem_efficient : bool = False,
        ):
        super().__init__(in_features, out_features, bias, device, dtype)

        if not is_triton_available:
            raise ImportError('''Could not import triton. Please install triton to use SwitchBackLinear.
                               Alternatively, you can use bnb.nn.SwitchBackLinearBnb, but it will be slower''')

        # By default, we use the global quantization.
        self.vector_wise_quantization = vector_wise_quantization
        if self.vector_wise_quantization:
            self._fn = _switchback_vectorrize
            if mem_efficient:
                print('mem efficient is not supported for vector-wise quantization.')
                exit(1)
        else:
            if mem_efficient:
                self._fn = _switchback_global_mem_efficient
            else:
                self._fn = _switchback_global

    def prepare_for_eval(self):
        # If we just want to do eval, we can pre-quantize the weights instead of doing it on the forward pass.
        # Note this is experimental and not tested thoroughly.
        # Note this needs to be explicitly called with something like
        # def cond_prepare(m):
        #     if hasattr(m, "prepare_for_eval"):
        #         m.prepare_for_eval()
        # model.apply(cond_prepare)
        print('=> preparing for eval.')
        if self.vector_wise_quantization:
            W_int8, state_W = quantize_rowwise(self.weight)
        else:
            W_int8, state_W = quantize_global(self.weight)

        self.register_buffer("W_int8", W_int8)
        self.register_buffer("state_W", state_W)

        del self.weight

    def forward(self, x):
        if self.training:
            return self._fn.apply(x, self.weight, self.bias)
        else:
            # If it hasn't been "prepared for eval", run the standard forward pass.
            if not hasattr(self, "W_int8"):
                return self._fn.apply(x, self.weight, self.bias)

            # Otherwise, use pre-computed weights.
            X = x.view(-1, x.size(-1))
            X_int8, state_X = quantize_rowwise(X)

            if self.vector_wise_quantization:
                return int8_matmul_rowwise_dequantize(
                    X_int8, self.W_int8.t(), state_X, self.state_W, self.bias
                ).view(*x.size()[:-1], -1)
            else:
                return int8_matmul_mixed_dequanitze(
                    X_int8, self.W_int8.t(), state_X, self.state_W, self.bias
                ).view(*x.size()[:-1], -1)

SwitchBackLinearGlobal = partial(SwitchBackLinear, vector_wise_quantization=False)
SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vector_wise_quantization=False, mem_efficient=True)
SwitchBackLinearVectorwise = partial(SwitchBackLinear, vector_wise_quantization=True)

# This is just the standard linear function.
class StandardLinearFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, weight, bias=None):
        X = input.view(-1, input.size(-1))

        ctx.save_for_backward(X, weight, bias)
        output = input.matmul(weight.t())
        if bias is not None:
            output += bias.unsqueeze(0).expand_as(output)
        return output.view(*input.size()[:-1], -1)

    @staticmethod
    def backward(ctx, grad_output_3D):
        input, weight, bias = ctx.saved_tensors

        grad_output = grad_output_3D.reshape(-1, grad_output_3D.size(-1))

        grad_input = grad_weight = grad_bias = None

        if ctx.needs_input_grad[0]:
            grad_input = grad_output.matmul(weight.to(grad_output.dtype)).view(*grad_output_3D.size()[:-1], -1)
        if ctx.needs_input_grad[1]:
            grad_weight = grad_output.t().matmul(input.to(grad_output.dtype))
        if bias is not None and ctx.needs_input_grad[2]:
            grad_bias = grad_output.sum(0)

        return grad_input, grad_weight, grad_bias

class StandardLinear(nn.Linear):

    def forward(self, x):
        return StandardLinearFunction.apply(x, self.weight, self.bias)