Spaces:
Sleeping
Sleeping
File size: 5,653 Bytes
82fea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim import Optimizer
from bitsandbytes.optim.optimizer import Optimizer1State
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
"LARS without momentum is not supported!"
)
super().__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
"LARS without momentum is not supported!"
)
super().__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class LARS32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
"LARS without momentum is not supported!"
)
super().__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class PytorchLARS(Optimizer):
def __init__(
self,
params,
lr=0.01,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
max_unorm=0.02,
):
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr}")
if momentum < 0.0:
raise ValueError(f"Invalid momentum value: {momentum}")
if weight_decay < 0.0:
raise ValueError(
f"Invalid weight_decay value: {weight_decay}"
)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
max_unorm=max_unorm,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening"
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
d_p_list = []
momentum_buffer_list = []
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
max_unorm = group["max_unorm"]
lr = group["lr"]
for p in group["params"]:
if p.grad is None:
continue
state = self.state[p]
d_p = p.grad
if weight_decay != 0:
d_p = d_p.add(p, alpha=weight_decay)
if momentum != 0:
buf = state.get("momentum_buffer", None)
if buf is None:
buf = torch.clone(d_p).detach()
state["momentum_buffer"] = buf
else:
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
update = d_p + buf * momentum
else:
update = buf
update_scale = 1.0
if max_unorm > 0.0:
assert p.dtype == torch.float32
pnorm = torch.norm(p.detach())
unorm = torch.norm(update)
if unorm > max_unorm * pnorm:
update_scale = max_unorm * pnorm / unorm
p.add_(update, alpha=-lr * update_scale)
return loss
|