File size: 15,874 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import operator
import warnings
from dataclasses import dataclass
from functools import reduce  # Required in Python 3

import torch

import bitsandbytes.functional as F

from bitsandbytes.autograd._functions import MatmulLtState, GlobalOutlierPooler


# math.prod not compatible with python < 3.8
def prod(iterable):
    return reduce(operator.mul, iterable, 1)

tensor = torch.Tensor

class MatMulFP8Mixed(torch.autograd.Function):
    # forward is the same, but we added the fallback for pre-turing GPUs
    # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")

    @staticmethod
    def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
        # default of pytorch behavior if inputs are empty
        ctx.is_empty = False
        if prod(A.shape) == 0:
            ctx.is_empty = True
            ctx.A = A
            ctx.B = B

            B_shape = B.shape
            if A.shape[-1] == B_shape[0]:
                return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device)
            else:
                return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device)

        # 1. Dequantize
        # 2. MatmulnN
        cA, state = F.quantize_blockwise(A, code=fw_code, blocksize=bsz)
        fp8A = F.dequantize_blockwise(cA, state, blocksize=bsz).to(A.dtype)

        cB, state = F.quantize(B.float(), code=fw_code)
        fp8B = F.dequantize(cB, state).to(B.dtype)

        output = torch.matmul(fp8A, fp8B)

        # output is half

        # 3. Save state
        ctx.fw_code = fw_code
        ctx.bw_code = bw_code
        ctx.bsz = bsz
        ctx.bsz2 = bsz2
        ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype

        if any(ctx.needs_input_grad[:2]):
            # NOTE: we send back A, and re-quant.
            ctx.tensors = (A, fp8B)
        else:
            ctx.tensors = (None, None)

        return output

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.is_empty:
            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None

        req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
        A, B = ctx.tensors

        grad_A, grad_B = None, None

        # TODO: Fix blocksize to be output_dim
        cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2)
        fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype)

        # cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
        # fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)

        # grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
        # fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector')
        # fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose
        # fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2])

        # not supported by PyTorch. TODO: create work-around
        if req_gradA: 
            grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype)

        if req_gradB:
            if len(A.shape) == 3:
                At = A.transpose(2, 1).contiguous()
            else:
                At = A.transpose(1, 0).contiguous()
            # cA, state = F.quantize(At.float(), code=ctx.fw_code)
            # fp8At = F.dequantize(cA, state).to(A.dtype)
            grad_B = torch.matmul(At.to(grad_output.dtype), grad_output).to(B.dtype)

        return grad_A, grad_B, None, None, None, None, None


class MatMulFP8Global(torch.autograd.Function):
    # forward is the same, but we added the fallback for pre-turing GPUs
    # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")

    @staticmethod
    def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
        # default of pytorch behavior if inputs are empty
        ctx.is_empty = False
        if prod(A.shape) == 0:
            ctx.is_empty = True
            ctx.A = A
            ctx.B = B

            B_shape = B.shape
            if A.shape[-1] == B_shape[0]:
                return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device)
            else:
                return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device)

        # 1. Dequantize
        # 2. MatmulnN
        cA, state = F.quantize(A.float(), code=fw_code)
        fp8A = F.dequantize(cA, state).to(A.dtype)

        cB, state = F.quantize(B.float(), code=fw_code)
        fp8B = F.dequantize(cB, state).to(B.dtype)

        output = torch.matmul(fp8A, fp8B)

        # output is half

        # 3. Save state
        ctx.fw_code = fw_code
        ctx.bw_code = bw_code
        ctx.bsz = bsz
        ctx.bsz2 = bsz2
        ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype

        if any(ctx.needs_input_grad[:2]):
            # NOTE: we send back A, and re-quant.
            ctx.tensors = (A, fp8B)
        else:
            ctx.tensors = (None, None)

        return output

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.is_empty:
            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None

        req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
        A, B = ctx.tensors

        grad_A, grad_B = None, None

        # TODO: Fix blocksize to be output_dim
        cgrad_out, state = F.quantize(grad_output.float(), code=ctx.bw_code)
        fp8out = F.dequantize(cgrad_out, state).to(grad_output.dtype)

        # cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
        # fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)

        # grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
        # fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector')
        # fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose
        # fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2])

        # not supported by PyTorch. TODO: create work-around
        if req_gradA: 
            grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype)

        if req_gradB:
            if len(A.shape) == 3:
                At = A.transpose(2, 1).contiguous()
            else:
                At = A.transpose(1, 0).contiguous()
            cA, state = F.quantize(At.float(), code=ctx.fw_code)
            fp8At = F.dequantize(cA, state).to(A.dtype)
            grad_B = torch.matmul(fp8At.to(fp8out.dtype), fp8out).to(B.dtype)

        return grad_A, grad_B, None, None, None, None, None


class SwitchBackBnb(torch.autograd.Function):
    @staticmethod
    def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
        # default to pytorch behavior if inputs are empty
        ctx.is_empty = False
        if prod(A.shape) == 0:
            ctx.is_empty = True
            ctx.A = A
            ctx.B = B
            ctx.bias = bias
            if A.shape[-1] == B.shape[0]:
                return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
            else:
                return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)

        # 1. Quantize A
        # 2. Quantize B
        # 3. Matmul
        # 4. Mixed-precision decomposition matmul
        # 5. Save state
        formatB = state.formatB
        input_shape = A.shape
        if state.outlier_pool is None:
            state.outlier_pool = GlobalOutlierPooler.get_instance()

        # Cast A to fp16
        if A.dtype != torch.float16:
            warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")

        # 1. Quantize A
        if len(A.shape) == 3:
            A = A.view(-1, A.shape[-1]).contiguous()
        CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(
            A.to(torch.float16), threshold=state.threshold
        )

        if state.threshold > 0.0 and coo_tensorA is not None:
            if state.has_fp16_weights:
                idx = torch.unique(coo_tensorA.colidx).long()
                CA[:, idx] = 0
                CAt[:, idx] = 0
                subA = A[:, idx]
                state.subB = B[:, idx].t().contiguous()
                state.idx = idx
            else:
                if state.CxB is None:
                    # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
                    # we also need to convert it to the turing/ampere format
                    state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
        else:
            #print('A shape', A.shape)
            if not state.has_fp16_weights and state.CxB is None:
                state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
            subA = None

        # 2. Quantize B
        if state.has_fp16_weights:
            #print('B shape', B.shape)
            has_grad = True if (getattr(B, "grad", None) is not None) else False
            is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
            if is_transposed:
                B = B.contiguous()

            if (state.is_training and not has_grad) or state.CxB is None:
                state.reset_grads()
                (
                    CB,
                    state.CBt,
                    state.SCB,
                    state.SCBt,
                    coo_tensorB,
                ) = F.double_quant(B.to(torch.float16))
                state.CxB, state.SB = F.transform(CB, to_order=formatB)
        else:
            has_grad = False

        if coo_tensorA is not None and not state.has_fp16_weights:
            # extract outliers

            outlier_idx = torch.unique(coo_tensorA.colidx)
            state.idx = outlier_idx
            # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
            # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
            #    # do not use pool for 2nd FFN layer
            #    state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
            # else:
            #    state.idx = outlier_idx
            outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
            state.subB = (
                (outliers * state.SCB.view(-1, 1) / 127.0)
                .t()
                .contiguous()
                .to(A.dtype)
            )
            CA[:, state.idx.long()] = 0
            CAt[:, state.idx.long()] = 0
            subA = A[:, state.idx.long()]

        shapeB = state.SB[0]

        if len(input_shape) == 3:
            output_shape = (input_shape[0], input_shape[1], shapeB[0])
        else:
            output_shape = (input_shape[0], shapeB[0])

        # 3. Matmul
        C32A, SA = F.transform(CA, "col32")
        out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
        # we apply the fused bias here

        if bias is None or bias.dtype == torch.float16:
            output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
            output = output.to(A.dtype)
        else:  # apply bias separately
            output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
            output = output.to(A.dtype).add_(bias)

        # 4. Mixed-precision decomposition matmul
        if coo_tensorA is not None and subA is not None:
            output += torch.matmul(subA, state.subB)

        # 5. Save state
        ctx.state = state

        ctx.formatB = formatB
        ctx.grad_shape = input_shape
        ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype

        if any(ctx.needs_input_grad[:2]):
            ctx.tensors = (CAt, subA, A)
            ctx.tensor_states = (SCAt, state.idx)
        else:
            ctx.tensors = [None, None, None]
            ctx.tensor_states = (None, None)
            ctx.save_for_backward(None, None)


        clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
        return clone_func(output.view(output_shape))

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.is_empty:
            bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
        req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
        CAt, subA, A = ctx.tensors
        SCAt, idx = ctx.tensor_states
        formatB = ctx.formatB
        state = ctx.state
        grad_A = grad_B = grad_bias = None

        if req_gradBias:
            # compute grad_bias first before changing grad_output dtype
            grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias)

        # Cast grad_output to fp16
        if len(grad_output.shape) == 3:
            grad_output = grad_output.reshape(
                -1, grad_output.shape[-1]
            ).contiguous()

        Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))

        if req_gradB:
            # print('back A shape', A.shape)
            # print('grad output t shape', grad_output.t().shape)
            grad_B = torch.matmul(grad_output.t(), A)

        if req_gradA:
            if state.CBt is not None:
                C32grad, Sgrad = F.transform(Cgrad, "col32")
                if state.CxBt is None:
                    state.CxBt, state.SBt = F.transform(
                        state.CBt, to_order=formatB, transpose=True
                    )
                # print('back B shape', state.CxBt.shape)
                # print('back grad shape', C32grad.shape)
                gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
                grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)

            elif state.CB is not None:
                CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0))
                grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
            else:
                raise Exception('State must contain either CBt or CB matrix for backward')

        return grad_A, grad_B, None, grad_bias, None

def get_block_sizes(input_matrix, weight_matrix):
    input_features = input_matrix.shape[-1]
    output_features = (weight_matrix.shape[0] if weight_matrix.shape[1] == input_features else weight_matrix.shape[1])
    array = [4096, 2048, 1024, 512, 256, 128, 64, 0]
    bsz, bsz2 = 1024, 1024
    for i, k in enumerate(array):
        if input_features > array[i + 1]:
            bsz = k
            break
    for i, k in enumerate(array):
        if output_features > array[i + 1]:
            bsz2 = k
            break

    return bsz, bsz2

def matmul_fp8_global(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
    if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B)
    return MatMulFP8Global.apply(A, B, out, fw_code, bw_code, bsz, bsz2)

def matmul_fp8_mixed(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
    if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B)
    return MatMulFP8Mixed.apply(A, B, out, fw_code, bw_code, bsz, bsz2)

def switchback_bnb(
    A: tensor,
    B: tensor,
    out: tensor = None,
    state: MatmulLtState = None,
    threshold=0.0,
    bias=None
):
    state = state or MatmulLtState()
    if threshold > 0.0:
        state.threshold = threshold
    return SwitchBackBnb.apply(A, B, out, bias, state)