File size: 20,330 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
Metadata-Version: 2.1
Name: datasets
Version: 2.13.1
Summary: HuggingFace community-driven open-source library of datasets
Home-page: https://github.com/huggingface/datasets
Author: HuggingFace Inc.
Author-email: [email protected]
License: Apache 2.0
Download-URL: https://github.com/huggingface/datasets/tags
Keywords: datasets machine learning datasets metrics
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.7.0
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: numpy (>=1.17)
Requires-Dist: pyarrow (>=8.0.0)
Requires-Dist: dill (<0.3.7,>=0.3.0)
Requires-Dist: pandas
Requires-Dist: requests (>=2.19.0)
Requires-Dist: tqdm (>=4.62.1)
Requires-Dist: xxhash
Requires-Dist: multiprocess
Requires-Dist: fsspec[http] (>=2021.11.1)
Requires-Dist: aiohttp
Requires-Dist: huggingface-hub (<1.0.0,>=0.11.0)
Requires-Dist: packaging
Requires-Dist: pyyaml (>=5.1)
Requires-Dist: importlib-metadata ; python_version < "3.8"
Provides-Extra: apache-beam
Requires-Dist: apache-beam (<2.44.0,>=2.26.0) ; extra == 'apache-beam'
Provides-Extra: audio
Requires-Dist: soundfile (>=0.12.1) ; extra == 'audio'
Requires-Dist: librosa ; extra == 'audio'
Provides-Extra: benchmarks
Requires-Dist: numpy (==1.18.5) ; extra == 'benchmarks'
Requires-Dist: tensorflow (==2.3.0) ; extra == 'benchmarks'
Requires-Dist: torch (==1.7.1) ; extra == 'benchmarks'
Requires-Dist: transformers (==3.0.2) ; extra == 'benchmarks'
Requires-Dist: protobuf (==3.20.3) ; extra == 'benchmarks'
Provides-Extra: dev
Requires-Dist: absl-py ; extra == 'dev'
Requires-Dist: joblibspark ; extra == 'dev'
Requires-Dist: pytest ; extra == 'dev'
Requires-Dist: pytest-datadir ; extra == 'dev'
Requires-Dist: pytest-xdist ; extra == 'dev'
Requires-Dist: elasticsearch (<8.0.0) ; extra == 'dev'
Requires-Dist: faiss-cpu (>=1.6.4) ; extra == 'dev'
Requires-Dist: lz4 ; extra == 'dev'
Requires-Dist: pyspark (>=3.4) ; extra == 'dev'
Requires-Dist: py7zr ; extra == 'dev'
Requires-Dist: rarfile (>=4.0) ; extra == 'dev'
Requires-Dist: sqlalchemy (<2.0.0) ; extra == 'dev'
Requires-Dist: torch ; extra == 'dev'
Requires-Dist: soundfile (>=0.12.1) ; extra == 'dev'
Requires-Dist: transformers ; extra == 'dev'
Requires-Dist: zstandard ; extra == 'dev'
Requires-Dist: Pillow (>=6.2.1) ; extra == 'dev'
Requires-Dist: librosa ; extra == 'dev'
Requires-Dist: black (~=23.1) ; extra == 'dev'
Requires-Dist: ruff (>=0.0.241) ; extra == 'dev'
Requires-Dist: pyyaml (>=5.3.1) ; extra == 'dev'
Requires-Dist: s3fs ; extra == 'dev'
Requires-Dist: apache-beam (<2.44.0,>=2.26.0) ; (python_version < "3.8") and extra == 'dev'
Requires-Dist: s3fs (>=2021.11.1) ; (python_version < "3.8") and extra == 'dev'
Requires-Dist: tiktoken ; (python_version >= "3.8") and extra == 'dev'
Requires-Dist: tensorflow (!=2.6.0,!=2.6.1,>=2.3) ; (sys_platform != "darwin" or platform_machine != "arm64") and extra == 'dev'
Requires-Dist: tensorflow-macos ; (sys_platform == "darwin" and platform_machine == "arm64") and extra == 'dev'
Provides-Extra: docs
Requires-Dist: s3fs ; extra == 'docs'
Provides-Extra: jax
Requires-Dist: jax (!=0.3.2,<=0.3.25,>=0.2.8) ; extra == 'jax'
Requires-Dist: jaxlib (<=0.3.25,>=0.1.65) ; extra == 'jax'
Provides-Extra: metrics-tests
Requires-Dist: accelerate ; extra == 'metrics-tests'
Requires-Dist: bert-score (>=0.3.6) ; extra == 'metrics-tests'
Requires-Dist: jiwer ; extra == 'metrics-tests'
Requires-Dist: langdetect ; extra == 'metrics-tests'
Requires-Dist: mauve-text ; extra == 'metrics-tests'
Requires-Dist: nltk ; extra == 'metrics-tests'
Requires-Dist: rouge-score ; extra == 'metrics-tests'
Requires-Dist: sacrebleu ; extra == 'metrics-tests'
Requires-Dist: sacremoses ; extra == 'metrics-tests'
Requires-Dist: scikit-learn ; extra == 'metrics-tests'
Requires-Dist: scipy ; extra == 'metrics-tests'
Requires-Dist: sentencepiece ; extra == 'metrics-tests'
Requires-Dist: seqeval ; extra == 'metrics-tests'
Requires-Dist: spacy (>=3.0.0) ; extra == 'metrics-tests'
Requires-Dist: tldextract ; extra == 'metrics-tests'
Requires-Dist: toml (>=0.10.1) ; extra == 'metrics-tests'
Requires-Dist: typer (<0.5.0) ; extra == 'metrics-tests'
Requires-Dist: requests-file (>=1.5.1) ; extra == 'metrics-tests'
Requires-Dist: tldextract (>=3.1.0) ; extra == 'metrics-tests'
Requires-Dist: texttable (>=1.6.3) ; extra == 'metrics-tests'
Requires-Dist: Werkzeug (>=1.0.1) ; extra == 'metrics-tests'
Requires-Dist: six (~=1.15.0) ; extra == 'metrics-tests'
Provides-Extra: quality
Requires-Dist: black (~=23.1) ; extra == 'quality'
Requires-Dist: ruff (>=0.0.241) ; extra == 'quality'
Requires-Dist: pyyaml (>=5.3.1) ; extra == 'quality'
Provides-Extra: s3
Requires-Dist: s3fs ; extra == 's3'
Provides-Extra: streaming
Provides-Extra: tensorflow
Requires-Dist: tensorflow (!=2.6.0,!=2.6.1,>=2.2.0) ; (sys_platform != "darwin" or platform_machine != "arm64") and extra == 'tensorflow'
Requires-Dist: tensorflow-macos ; (sys_platform == "darwin" and platform_machine == "arm64") and extra == 'tensorflow'
Provides-Extra: tensorflow_gpu
Requires-Dist: tensorflow-gpu (!=2.6.0,!=2.6.1,>=2.2.0) ; extra == 'tensorflow_gpu'
Provides-Extra: tests
Requires-Dist: absl-py ; extra == 'tests'
Requires-Dist: joblibspark ; extra == 'tests'
Requires-Dist: pytest ; extra == 'tests'
Requires-Dist: pytest-datadir ; extra == 'tests'
Requires-Dist: pytest-xdist ; extra == 'tests'
Requires-Dist: elasticsearch (<8.0.0) ; extra == 'tests'
Requires-Dist: faiss-cpu (>=1.6.4) ; extra == 'tests'
Requires-Dist: lz4 ; extra == 'tests'
Requires-Dist: pyspark (>=3.4) ; extra == 'tests'
Requires-Dist: py7zr ; extra == 'tests'
Requires-Dist: rarfile (>=4.0) ; extra == 'tests'
Requires-Dist: sqlalchemy (<2.0.0) ; extra == 'tests'
Requires-Dist: torch ; extra == 'tests'
Requires-Dist: soundfile (>=0.12.1) ; extra == 'tests'
Requires-Dist: transformers ; extra == 'tests'
Requires-Dist: zstandard ; extra == 'tests'
Requires-Dist: Pillow (>=6.2.1) ; extra == 'tests'
Requires-Dist: librosa ; extra == 'tests'
Requires-Dist: apache-beam (<2.44.0,>=2.26.0) ; (python_version < "3.8") and extra == 'tests'
Requires-Dist: s3fs (>=2021.11.1) ; (python_version < "3.8") and extra == 'tests'
Requires-Dist: tiktoken ; (python_version >= "3.8") and extra == 'tests'
Requires-Dist: tensorflow (!=2.6.0,!=2.6.1,>=2.3) ; (sys_platform != "darwin" or platform_machine != "arm64") and extra == 'tests'
Requires-Dist: tensorflow-macos ; (sys_platform == "darwin" and platform_machine == "arm64") and extra == 'tests'
Provides-Extra: torch
Requires-Dist: torch ; extra == 'torch'
Provides-Extra: vision
Requires-Dist: Pillow (>=6.2.1) ; extra == 'vision'

<p align="center">
  <picture>
    <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/datasets-logo-dark.svg">
    <source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/datasets-logo-light.svg">
    <img alt="Hugging Face Datasets Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/datasets-logo-light.svg" width="352" height="59" style="max-width: 100%;">
  </picture>
  <br/>
  <br/>
</p>

<p align="center">
    <a href="https://github.com/huggingface/datasets/actions/workflows/ci.yml?query=branch%3Amain">
        <img alt="Build" src="https://github.com/huggingface/datasets/actions/workflows/ci.yml/badge.svg?branch=main">
    </a>
    <a href="https://github.com/huggingface/datasets/blob/main/LICENSE">
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://huggingface.co/docs/datasets/index.html">
        <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/datasets/index.html.svg?down_color=red&down_message=offline&up_message=online">
    </a>
    <a href="https://github.com/huggingface/datasets/releases">
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/datasets.svg">
    </a>
    <a href="https://huggingface.co/datasets/">
        <img alt="Number of datasets" src="https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen">
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
    <a href="https://zenodo.org/badge/latestdoi/250213286"><img src="https://zenodo.org/badge/250213286.svg" alt="DOI"></a>
</p>

πŸ€— Datasets is a lightweight library providing **two** main features:

- **one-line dataloaders for many public datasets**: one-liners to download and pre-process any of the ![number of datasets](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen) major public datasets (image datasets, audio datasets, text datasets in 467 languages and dialects, etc.) provided on the [HuggingFace Datasets Hub](https://huggingface.co/datasets). With a simple command like `squad_dataset = load_dataset("squad")`, get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
- **efficient data pre-processing**: simple, fast and reproducible data pre-processing for the public datasets as well as your own local datasets in CSV, JSON, text, PNG, JPEG, WAV, MP3, Parquet, etc. With simple commands like `processed_dataset = dataset.map(process_example)`, efficiently prepare the dataset for inspection and ML model evaluation and training.

[πŸŽ“ **Documentation**](https://huggingface.co/docs/datasets/) [πŸ•Ή **Colab tutorial**](https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb)

[πŸ”Ž **Find a dataset in the Hub**](https://huggingface.co/datasets) [🌟 **Add a new dataset to the Hub**](https://huggingface.co/docs/datasets/share.html)

<h3 align="center">
    <a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/datasets/main/docs/source/imgs/course_banner.png"></a>
</h3>

πŸ€— Datasets is designed to let the community easily add and share new datasets.

πŸ€— Datasets has many additional interesting features:

- Thrive on large datasets: πŸ€— Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow).
- Smart caching: never wait for your data to process several times.
- Lightweight and fast with a transparent and pythonic API (multi-processing/caching/memory-mapping).
- Built-in interoperability with NumPy, pandas, PyTorch, Tensorflow 2 and JAX.
- Native support for audio and image data
- Enable streaming mode to save disk space and start iterating over the dataset immediately.

πŸ€— Datasets originated from a fork of the awesome [TensorFlow Datasets](https://github.com/tensorflow/datasets) and the HuggingFace team want to deeply thank the TensorFlow Datasets team for building this amazing library. More details on the differences between πŸ€— Datasets and `tfds` can be found in the section [Main differences between πŸ€— Datasets and `tfds`](#main-differences-between--datasets-and-tfds).

# Installation

## With pip

πŸ€— Datasets can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)

```bash
pip install datasets
```

## With conda

πŸ€— Datasets can be installed using conda as follows:

```bash
conda install -c huggingface -c conda-forge datasets
```

Follow the installation pages of TensorFlow and PyTorch to see how to install them with conda.

For more details on installation, check the installation page in the documentation: https://huggingface.co/docs/datasets/installation

## Installation to use with PyTorch/TensorFlow/pandas

If you plan to use πŸ€— Datasets with PyTorch (1.0+), TensorFlow (2.2+) or pandas, you should also install PyTorch, TensorFlow or pandas.

For more details on using the library with NumPy, pandas, PyTorch or TensorFlow, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart

# Usage

πŸ€— Datasets is made to be very simple to use - the API is centered around a single function, `datasets.load_dataset(dataset_name, **kwargs)`, that instantiates a dataset.

This library can be used for text/image/audio/etc. datasets. Here is an example to load a text dataset:

Here is a quick example:

```python
from datasets import load_dataset

# Print all the available datasets
from huggingface_hub import list_datasets
print([dataset.id for dataset in list_datasets()])

# Load a dataset and print the first example in the training set
squad_dataset = load_dataset('squad')
print(squad_dataset['train'][0])

# Process the dataset - add a column with the length of the context texts
dataset_with_length = squad_dataset.map(lambda x: {"length": len(x["context"])})

# Process the dataset - tokenize the context texts (using a tokenizer from the πŸ€— Transformers library)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')

tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)
```

If your dataset is bigger than your disk or if you don't want to wait to download the data, you can use streaming:

```python
# If you want to use the dataset immediately and efficiently stream the data as you iterate over the dataset
image_dataset = load_dataset('cifar100', streaming=True)
for example in image_dataset["train"]:
    break
```

For more details on using the library, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart and the specific pages on:

- Loading a dataset: https://huggingface.co/docs/datasets/loading
- What's in a Dataset: https://huggingface.co/docs/datasets/access
- Processing data with πŸ€— Datasets: https://huggingface.co/docs/datasets/process
    - Processing audio data: https://huggingface.co/docs/datasets/audio_process
    - Processing image data: https://huggingface.co/docs/datasets/image_process
    - Processing text data: https://huggingface.co/docs/datasets/nlp_process
- Streaming a dataset: https://huggingface.co/docs/datasets/stream
- Writing your own dataset loading script: https://huggingface.co/docs/datasets/dataset_script
- etc.

Another introduction to πŸ€— Datasets is the tutorial on Google Colab here:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb)

# Add a new dataset to the Hub

We have a very detailed step-by-step guide to add a new dataset to the ![number of datasets](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen) datasets already provided on the [HuggingFace Datasets Hub](https://huggingface.co/datasets).

You can find:
- [how to upload a dataset to the Hub using your web browser or Python](https://huggingface.co/docs/datasets/upload_dataset) and also
- [how to upload it using Git](https://huggingface.co/docs/datasets/share).

# Main differences between πŸ€— Datasets and `tfds`

If you are familiar with the great TensorFlow Datasets, here are the main differences between πŸ€— Datasets and `tfds`:

- the scripts in πŸ€— Datasets are not provided within the library but are queried, downloaded/cached and dynamically loaded upon request
- the backend serialization of πŸ€— Datasets is based on [Apache Arrow](https://arrow.apache.org/) instead of TF Records and leverage python dataclasses for info and features with some diverging features (we mostly don't do encoding and store the raw data as much as possible in the backend serialization cache).
- the user-facing dataset object of πŸ€— Datasets is not a `tf.data.Dataset` but a built-in framework-agnostic dataset class with methods inspired by what we like in `tf.data` (like a `map()` method). It basically wraps a memory-mapped Arrow table cache.

# Disclaimers

Similar to TensorFlow Datasets, πŸ€— Datasets is a utility library that downloads and prepares public datasets. We do not host or distribute most of these datasets, vouch for their quality or fairness, or claim that you have license to use them. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

Moreover πŸ€— Datasets may run Python code defined by the dataset authors to parse certain data formats or structures. For security reasons, we ask users to:
- check the dataset scripts they're going to run beforehand and
- pin the `revision` of the repositories they use.

If you're a dataset owner and wish to update any part of it (description, citation, license, etc.), or do not want your dataset to be included in the Hugging Face Hub, please get in touch by opening a discussion or a pull request in the Community tab of the dataset page. Thanks for your contribution to the ML community!

## BibTeX

If you want to cite our πŸ€— Datasets library, you can use our [paper](https://arxiv.org/abs/2109.02846):

```bibtex
@inproceedings{lhoest-etal-2021-datasets,
    title = "Datasets: A Community Library for Natural Language Processing",
    author = "Lhoest, Quentin  and
      Villanova del Moral, Albert  and
      Jernite, Yacine  and
      Thakur, Abhishek  and
      von Platen, Patrick  and
      Patil, Suraj  and
      Chaumond, Julien  and
      Drame, Mariama  and
      Plu, Julien  and
      Tunstall, Lewis  and
      Davison, Joe  and
      {\v{S}}a{\v{s}}ko, Mario  and
      Chhablani, Gunjan  and
      Malik, Bhavitvya  and
      Brandeis, Simon  and
      Le Scao, Teven  and
      Sanh, Victor  and
      Xu, Canwen  and
      Patry, Nicolas  and
      McMillan-Major, Angelina  and
      Schmid, Philipp  and
      Gugger, Sylvain  and
      Delangue, Cl{\'e}ment  and
      Matussi{\`e}re, Th{\'e}o  and
      Debut, Lysandre  and
      Bekman, Stas  and
      Cistac, Pierric  and
      Goehringer, Thibault  and
      Mustar, Victor  and
      Lagunas, Fran{\c{c}}ois  and
      Rush, Alexander  and
      Wolf, Thomas",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-demo.21",
    pages = "175--184",
    abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
    eprint={2109.02846},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
}
```

If you need to cite a specific version of our πŸ€— Datasets library for reproducibility, you can use the corresponding version Zenodo DOI from this [list](https://zenodo.org/search?q=conceptrecid:%224817768%22&sort=-version&all_versions=True).