Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import random | |
from pathlib import Path | |
from typing import List | |
import numpy as np | |
import torch | |
from torch.cuda.amp import GradScaler | |
from .utils import ( | |
MODEL_NAME, | |
OPTIMIZER_NAME, | |
RNG_STATE_NAME, | |
SCALER_NAME, | |
SCHEDULER_NAME, | |
get_pretty_name, | |
is_tpu_available, | |
is_xpu_available, | |
save, | |
) | |
if is_tpu_available(check_device=False): | |
import torch_xla.core.xla_model as xm | |
from .logging import get_logger | |
from .state import PartialState | |
logger = get_logger(__name__) | |
def save_accelerator_state( | |
output_dir: str, | |
model_states: List[dict], | |
optimizers: list, | |
schedulers: list, | |
process_index: int, | |
scaler: GradScaler = None, | |
): | |
""" | |
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory. | |
Args: | |
output_dir (`str` or `os.PathLike`): | |
The name of the folder to save all relevant weights and states. | |
model_states (`List[torch.nn.Module]`): | |
A list of model states | |
optimizers (`List[torch.optim.Optimizer]`): | |
A list of optimizer instances | |
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`): | |
A list of learning rate schedulers | |
process_index (`int`): | |
The current process index in the Accelerator state | |
scaler (`torch.cuda.amp.GradScaler`, *optional*): | |
An optional gradient scaler instance to save | |
""" | |
# Model states | |
for i, state in enumerate(model_states): | |
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin" | |
output_model_file = os.path.join(output_dir, weights_name) | |
save(state, output_model_file) | |
logger.info(f"Model weights saved in {output_model_file}") | |
# Optimizer states | |
for i, opt in enumerate(optimizers): | |
state = opt.state_dict() | |
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin" | |
output_optimizer_file = os.path.join(output_dir, optimizer_name) | |
save(state, output_optimizer_file) | |
logger.info(f"Optimizer state saved in {output_optimizer_file}") | |
# Scheduler states | |
for i, scheduler in enumerate(schedulers): | |
state = scheduler.state_dict() | |
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin" | |
output_scheduler_file = os.path.join(output_dir, scheduler_name) | |
save(state, output_scheduler_file) | |
logger.info(f"Scheduler state saved in {output_scheduler_file}") | |
# GradScaler state | |
if scaler is not None: | |
state = scaler.state_dict() | |
output_scaler_file = os.path.join(output_dir, SCALER_NAME) | |
torch.save(state, output_scaler_file) | |
logger.info(f"Gradient scaler state saved in {output_scaler_file}") | |
# Random number generator states | |
states = {} | |
states_name = f"{RNG_STATE_NAME}_{process_index}.pkl" | |
states["random_state"] = random.getstate() | |
states["numpy_random_seed"] = np.random.get_state() | |
states["torch_manual_seed"] = torch.get_rng_state() | |
if is_xpu_available(): | |
states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all() | |
else: | |
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all() | |
if is_tpu_available(): | |
states["xm_seed"] = xm.get_rng_state() | |
output_states_file = os.path.join(output_dir, states_name) | |
torch.save(states, output_states_file) | |
logger.info(f"Random states saved in {output_states_file}") | |
return output_dir | |
def load_accelerator_state( | |
input_dir, | |
models, | |
optimizers, | |
schedulers, | |
process_index, | |
scaler=None, | |
map_location=None, | |
**load_model_func_kwargs, | |
): | |
""" | |
Loads states of the models, optimizers, scaler, and RNG generators from a given directory. | |
Args: | |
input_dir (`str` or `os.PathLike`): | |
The name of the folder to load all relevant weights and states. | |
models (`List[torch.nn.Module]`): | |
A list of model instances | |
optimizers (`List[torch.optim.Optimizer]`): | |
A list of optimizer instances | |
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`): | |
A list of learning rate schedulers | |
process_index (`int`): | |
The current process index in the Accelerator state | |
scaler (`torch.cuda.amp.GradScaler`, *optional*): | |
An optional *GradScaler* instance to load | |
map_location (`str`, *optional*): | |
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device". | |
load_model_func_kwargs (`dict`, *optional*): | |
Additional arguments that can be passed to the model's `load_state_dict` method. | |
""" | |
if map_location not in [None, "cpu", "on_device"]: | |
raise TypeError( | |
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`" | |
) | |
if map_location is None: | |
map_location = "cpu" | |
elif map_location == "on_device": | |
map_location = PartialState().device | |
# Model states | |
for i, model in enumerate(models): | |
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin" | |
input_model_file = os.path.join(input_dir, weights_name) | |
models[i].load_state_dict(torch.load(input_model_file, map_location=map_location), **load_model_func_kwargs) | |
logger.info("All model weights loaded successfully") | |
# Optimizer states | |
for i, opt in enumerate(optimizers): | |
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin" | |
input_optimizer_file = os.path.join(input_dir, optimizer_name) | |
optimizer_state = torch.load(input_optimizer_file, map_location=map_location) | |
optimizers[i].load_state_dict(optimizer_state) | |
logger.info("All optimizer states loaded successfully") | |
# Scheduler states | |
for i, scheduler in enumerate(schedulers): | |
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin" | |
input_scheduler_file = os.path.join(input_dir, scheduler_name) | |
scheduler.load_state_dict(torch.load(input_scheduler_file)) | |
logger.info("All scheduler states loaded successfully") | |
# GradScaler state | |
if scaler is not None: | |
input_scaler_file = os.path.join(input_dir, SCALER_NAME) | |
scaler.load_state_dict(torch.load(input_scaler_file)) | |
logger.info("GradScaler state loaded successfully") | |
# Random states | |
try: | |
states = torch.load(os.path.join(input_dir, f"{RNG_STATE_NAME}_{process_index}.pkl")) | |
random.setstate(states["random_state"]) | |
np.random.set_state(states["numpy_random_seed"]) | |
torch.set_rng_state(states["torch_manual_seed"]) | |
if is_xpu_available(): | |
torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"]) | |
else: | |
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"]) | |
if is_tpu_available(): | |
xm.set_rng_state(states["xm_seed"]) | |
logger.info("All random states loaded successfully") | |
except Exception: | |
logger.info("Could not load random states") | |
def save_custom_state(obj, path, index: int = 0): | |
""" | |
Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl` | |
""" | |
# Should this be the right way to get a qual_name type value from `obj`? | |
save_location = Path(path) / f"custom_checkpoint_{index}.pkl" | |
logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}") | |
torch.save(obj.state_dict(), save_location) | |
def load_custom_state(obj, path, index: int = 0): | |
""" | |
Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl` | |
""" | |
load_location = f"{path}/custom_checkpoint_{index}.pkl" | |
logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}") | |
obj.load_state_dict(torch.load(load_location, map_location="cpu")) | |