Spaces:
Sleeping
Sleeping
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from contextlib import suppress | |
from typing import List, Optional, Union | |
import torch | |
from torch.utils.data import BatchSampler, DataLoader, IterableDataset | |
from .logging import get_logger | |
from .state import AcceleratorState, DistributedType, GradientState, is_tpu_available | |
from .utils import ( | |
RNGType, | |
broadcast, | |
broadcast_object_list, | |
concatenate, | |
find_batch_size, | |
get_data_structure, | |
initialize_tensors, | |
is_torch_version, | |
send_to_device, | |
slice_tensors, | |
synchronize_rng_states, | |
) | |
logger = get_logger(__name__) | |
# kwargs of the DataLoader in min version 1.4.0. | |
_PYTORCH_DATALOADER_KWARGS = { | |
"batch_size": 1, | |
"shuffle": False, | |
"sampler": None, | |
"batch_sampler": None, | |
"num_workers": 0, | |
"collate_fn": None, | |
"pin_memory": False, | |
"drop_last": False, | |
"timeout": 0, | |
"worker_init_fn": None, | |
"multiprocessing_context": None, | |
"generator": None, | |
"prefetch_factor": 2, | |
"persistent_workers": False, | |
} | |
# kwargs added after by version | |
_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {} | |
for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items(): | |
if is_torch_version(">=", v): | |
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs) | |
class BatchSamplerShard(BatchSampler): | |
""" | |
Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will | |
always yield a number of batches that is a round multiple of `num_processes` and that all have the same size. | |
Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration | |
at the first batch that would be too small / not present on all processes or loop with indices from the beginning. | |
Args: | |
batch_sampler (`torch.utils.data.sampler.BatchSampler`): | |
The batch sampler to split in several shards. | |
num_processes (`int`, *optional*, defaults to 1): | |
The number of processes running concurrently. | |
process_index (`int`, *optional*, defaults to 0): | |
The index of the current process. | |
split_batches (`bool`, *optional*, defaults to `False`): | |
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by | |
yielding different full batches on each process. | |
On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in: | |
- the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if | |
this argument is set to `False`. | |
- the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]` | |
then `[6, 7]` if this argument is set to `True`. | |
even_batches (`bool`, *optional*, defaults to `True`): | |
Whether or not to loop back at the beginning of the sampler when the number of samples is not a round | |
multiple of (original batch size / number of processes). | |
<Tip warning={true}> | |
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` | |
equal to `False` | |
</Tip>""" | |
def __init__( | |
self, | |
batch_sampler: BatchSampler, | |
num_processes: int = 1, | |
process_index: int = 0, | |
split_batches: bool = False, | |
even_batches: bool = True, | |
): | |
if split_batches and batch_sampler.batch_size % num_processes != 0: | |
raise ValueError( | |
f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) " | |
f"needs to be a round multiple of the number of processes ({num_processes})." | |
) | |
self.batch_sampler = batch_sampler | |
self.num_processes = num_processes | |
self.process_index = process_index | |
self.split_batches = split_batches | |
self.even_batches = even_batches | |
self.batch_size = getattr(batch_sampler, "batch_size", None) | |
self.drop_last = getattr(batch_sampler, "drop_last", False) | |
if self.batch_size is None and self.even_batches: | |
raise ValueError("You need to use `even_batches=False` when the batch sampler has no batch size.") | |
def total_length(self): | |
return len(self.batch_sampler) | |
def __len__(self): | |
if self.split_batches: | |
# Split batches does not change the length of the batch sampler | |
return len(self.batch_sampler) | |
if len(self.batch_sampler) % self.num_processes == 0: | |
# If the length is a round multiple of the number of processes, it's easy. | |
return len(self.batch_sampler) // self.num_processes | |
length = len(self.batch_sampler) // self.num_processes | |
if self.drop_last: | |
# Same if we drop the remainder. | |
return length | |
elif self.even_batches: | |
# When we even batches we always get +1 | |
return length + 1 | |
else: | |
# Otherwise it depends on the process index. | |
return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length | |
def __iter__(self): | |
return self._iter_with_split() if self.split_batches else self._iter_with_no_split() | |
def _iter_with_split(self): | |
initial_data = [] | |
batch_length = self.batch_sampler.batch_size // self.num_processes | |
for idx, batch in enumerate(self.batch_sampler): | |
if idx == 0: | |
initial_data = batch | |
if len(batch) == self.batch_size: | |
# If the batch is full, we yield the part of it this process is responsible of. | |
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] | |
# If drop_last is True of the last batch was full, iteration is over, otherwise... | |
if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size: | |
if not self.even_batches: | |
if len(batch) > batch_length * self.process_index: | |
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] | |
else: | |
# For degenerate cases where the dataset has less than num_process * batch_size samples | |
while len(initial_data) < self.batch_size: | |
initial_data += initial_data | |
batch = batch + initial_data | |
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] | |
def _iter_with_no_split(self): | |
initial_data = [] | |
batch_to_yield = [] | |
for idx, batch in enumerate(self.batch_sampler): | |
# We gather the initial indices in case we need to circle back at the end. | |
if not self.drop_last and idx < self.num_processes: | |
initial_data += batch | |
# We identify the batch to yield but wait until we ar sure every process gets a full batch before actually | |
# yielding it. | |
if idx % self.num_processes == self.process_index: | |
batch_to_yield = batch | |
if idx % self.num_processes == self.num_processes - 1 and ( | |
self.batch_size is None or len(batch) == self.batch_size | |
): | |
yield batch_to_yield | |
batch_to_yield = [] | |
# If drop_last is True, iteration is over, otherwise... | |
if not self.drop_last and len(initial_data) > 0: | |
if not self.even_batches: | |
if len(batch_to_yield) > 0: | |
yield batch_to_yield | |
else: | |
# ... we yield the complete batch we had saved before if it has the proper length | |
if len(batch_to_yield) == self.batch_size: | |
yield batch_to_yield | |
# For degenerate cases where the dataset has less than num_process * batch_size samples | |
while len(initial_data) < self.num_processes * self.batch_size: | |
initial_data += initial_data | |
# If the last batch seen was of the proper size, it has been yielded by its process so we move to the next | |
if len(batch) == self.batch_size: | |
batch = [] | |
idx += 1 | |
# Make sure we yield a multiple of self.num_processes batches | |
cycle_index = 0 | |
while idx % self.num_processes != 0 or len(batch) > 0: | |
end_index = cycle_index + self.batch_size - len(batch) | |
batch += initial_data[cycle_index:end_index] | |
if idx % self.num_processes == self.process_index: | |
yield batch | |
cycle_index = end_index | |
batch = [] | |
idx += 1 | |
class IterableDatasetShard(IterableDataset): | |
""" | |
Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will | |
always yield a number of samples that is a round multiple of the actual batch size (depending of the value of | |
`split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the | |
`drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would | |
be too small or loop with indices from the beginning. | |
Args: | |
dataset (`torch.utils.data.dataset.IterableDataset`): | |
The batch sampler to split in several shards. | |
batch_size (`int`, *optional*, defaults to 1): | |
The size of the batches per shard (if `split_batches=False`) or the size of the batches (if | |
`split_batches=True`). | |
drop_last (`bool`, *optional*, defaults to `False`): | |
Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the | |
beginning. | |
num_processes (`int`, *optional*, defaults to 1): | |
The number of processes running concurrently. | |
process_index (`int`, *optional*, defaults to 0): | |
The index of the current process. | |
split_batches (`bool`, *optional*, defaults to `False`): | |
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by | |
yielding different full batches on each process. | |
On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in: | |
- the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this | |
argument is set to `False`. | |
- the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if | |
this argument is set to `True`. | |
""" | |
def __init__( | |
self, | |
dataset: IterableDataset, | |
batch_size: int = 1, | |
drop_last: bool = False, | |
num_processes: int = 1, | |
process_index: int = 0, | |
split_batches: bool = False, | |
): | |
if split_batches and batch_size > 1 and batch_size % num_processes != 0: | |
raise ValueError( | |
f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) " | |
f"needs to be a round multiple of the number of processes ({num_processes})." | |
) | |
self.dataset = dataset | |
self.batch_size = batch_size | |
self.drop_last = drop_last | |
self.num_processes = num_processes | |
self.process_index = process_index | |
self.split_batches = split_batches | |
def __iter__(self): | |
real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes) | |
process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size | |
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size) | |
first_batch = None | |
current_batch = [] | |
for element in self.dataset: | |
current_batch.append(element) | |
# Wait to have a full batch before yielding elements. | |
if len(current_batch) == real_batch_size: | |
for i in process_slice: | |
yield current_batch[i] | |
if first_batch is None: | |
first_batch = current_batch.copy() | |
current_batch = [] | |
# Finished if drop_last is True, otherwise complete the last batch with elements from the beginning. | |
if not self.drop_last and len(current_batch) > 0: | |
if first_batch is None: | |
first_batch = current_batch.copy() | |
while len(current_batch) < real_batch_size: | |
current_batch += first_batch | |
for i in process_slice: | |
yield current_batch[i] | |
class DataLoaderStateMixin: | |
""" | |
Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the | |
end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other | |
useful information that might be needed. | |
**Available attributes:** | |
- **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch | |
- **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total | |
batch size | |
""" | |
def __init_subclass__(cls, **kwargs): | |
cls.end_of_dataloader = False | |
cls.remainder = -1 | |
def reset(self): | |
self.end_of_dataloader = False | |
self.remainder = -1 | |
def begin(self): | |
"Prepares the gradient state for the current dataloader" | |
self.reset() | |
with suppress(Exception): | |
length = getattr(self.dataset, "total_dataset_length", len(self.dataset)) | |
self.remainder = length % self.total_batch_size | |
self.gradient_state._add_dataloader(self) | |
def end(self): | |
"Cleans up the gradient state after exiting the dataloader" | |
self.gradient_state._remove_dataloader(self) | |
class DataLoaderShard(DataLoader, DataLoaderStateMixin): | |
""" | |
Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup. | |
Args: | |
dataset (`torch.utils.data.dataset.Dataset`): | |
The dataset to use to build this datalaoder. | |
device (`torch.device`, *optional*): | |
If passed, the device to put all batches on. | |
rng_types (list of `str` or [`~utils.RNGType`]): | |
The list of random number generators to synchronize at the beginning of each iteration. Should be one or | |
several of: | |
- `"torch"`: the base torch random number generator | |
- `"cuda"`: the CUDA random number generator (GPU only) | |
- `"xla"`: the XLA random number generator (TPU only) | |
- `"generator"`: an optional `torch.Generator` | |
synchronized_generator (`torch.Generator`, *optional*): | |
A random number generator to keep synchronized across processes. | |
split_batches (`int`, *optional*, defaults to 0): | |
The number of batches to skip at the beginning. | |
kwargs: | |
All other keyword arguments to pass to the regular `DataLoader` initialization. | |
**Available attributes:** | |
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. | |
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total | |
number of processes | |
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. | |
""" | |
def __init__(self, dataset, device=None, rng_types=None, synchronized_generator=None, skip_batches=0, **kwargs): | |
super().__init__(dataset, **kwargs) | |
self.device = device | |
self.rng_types = rng_types | |
self.synchronized_generator = synchronized_generator | |
self.skip_batches = skip_batches | |
self.gradient_state = GradientState() | |
def __iter__(self): | |
if self.rng_types is not None: | |
synchronize_rng_states(self.rng_types, self.synchronized_generator) | |
self.begin() | |
dataloader_iter = super().__iter__() | |
# We iterate one batch ahead to check when we are at the end | |
try: | |
current_batch = next(dataloader_iter) | |
except StopIteration: | |
yield | |
batch_index = 0 | |
while True: | |
try: | |
# But we still move it to the device so it is done before `StopIteration` is reached | |
if self.device is not None: | |
current_batch = send_to_device(current_batch, self.device) | |
next_batch = next(dataloader_iter) | |
if batch_index >= self.skip_batches: | |
yield current_batch | |
batch_index += 1 | |
current_batch = next_batch | |
except StopIteration: | |
self.end_of_dataloader = True | |
if batch_index >= self.skip_batches: | |
yield current_batch | |
break | |
self.end() | |
def total_batch_size(self): | |
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler | |
return ( | |
batch_sampler.batch_size | |
if getattr(batch_sampler, "split_batches", False) | |
else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1)) | |
) | |
def total_dataset_length(self): | |
if hasattr(self.dataset, "total_length"): | |
return self.dataset.total_length | |
else: | |
return len(self.dataset) | |
if is_tpu_available(check_device=False): | |
import torch_xla.distributed.parallel_loader as xpl | |
class MpDeviceLoaderWrapper(xpl.MpDeviceLoader): | |
""" | |
Wrapper for the xpl.MpDeviceLoader class that knows the total batch size. | |
XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to | |
prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main | |
thread only. | |
**Available attributes:** | |
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. | |
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total | |
number of processes | |
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. | |
""" | |
def __init__(self, dataloader: DataLoaderShard, device: torch.device): | |
super().__init__(dataloader, device) | |
self._rng_types = self._loader.rng_types | |
self._loader.rng_types = None | |
def __iter__(self): | |
if self._rng_types is not None: | |
synchronize_rng_states(self._rng_types, self._loader.synchronized_generator) | |
return super().__iter__() | |
def total_batch_size(self): | |
return self._loader.total_batch_size | |
def total_dataset_length(self): | |
return self._loader.total_dataset_length | |
class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin): | |
""" | |
Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each | |
process their part of the batch. | |
Args: | |
split_batches (`bool`, *optional*, defaults to `False`): | |
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or | |
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of | |
`num_processes` batches at each iteration). Another way to see this is that the observed batch size will be | |
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial | |
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch | |
size of the `dataloader` is a round multiple of `batch_size`. | |
skip_batches (`int`, *optional*, defaults to 0): | |
The number of batches to skip at the beginning of an iteration. | |
**Available attributes:** | |
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. | |
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total | |
number of processes | |
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. | |
""" | |
def __init__(self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, **kwargs): | |
shuffle = False | |
if is_torch_version(">=", "1.11.0"): | |
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe | |
# We need to save the shuffling state of the DataPipe | |
if isinstance(dataset, ShufflerIterDataPipe): | |
shuffle = dataset._shuffle_enabled | |
super().__init__(dataset, **kwargs) | |
self.split_batches = split_batches | |
if shuffle: | |
torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle) | |
self.gradient_state = GradientState() | |
self.state = AcceleratorState() | |
self._drop_last = _drop_last | |
self.skip_batches = skip_batches | |
def _fetch_batches(self, iterator): | |
batches, batch = None, None | |
# On process 0, we gather the batch to dispatch. | |
if self.state.process_index == 0: | |
try: | |
if self.split_batches: | |
# One batch of the main iterator is dispatched and split. | |
batch = next(iterator) | |
else: | |
# num_processes batches of the main iterator are concatenated then dispatched and split. | |
# We add the batches one by one so we have the remainder available when drop_last=False. | |
batches = [] | |
for _ in range(self.state.num_processes): | |
batches.append(next(iterator)) | |
batch = concatenate(batches, dim=0) | |
# In both cases, we need to get the structure of the batch that we will broadcast on other | |
# processes to initialize the tensors with the right shape. | |
# data_structure, stop_iteration | |
batch_info = [get_data_structure(batch), False] | |
except StopIteration: | |
batch_info = [None, True] | |
else: | |
batch_info = [None, self._stop_iteration] | |
# This is inplace, so after this instruction, every process has the same `batch_info` as process 0. | |
broadcast_object_list(batch_info) | |
self._stop_iteration = batch_info[1] | |
if self._stop_iteration: | |
# If drop_last is False and split_batches is False, we may have a remainder to take care of. | |
if not self.split_batches and not self._drop_last: | |
if self.state.process_index == 0 and len(batches) > 0: | |
batch = concatenate(batches, dim=0) | |
batch_info = [get_data_structure(batch), False] | |
else: | |
batch_info = [None, True] | |
broadcast_object_list(batch_info) | |
return batch, batch_info | |
def __iter__(self): | |
self.begin() | |
main_iterator = None | |
if is_torch_version(">=", "2.0.1"): | |
# NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts | |
# shared seed to all dist processes. Thus, we need to create iterator for all dist processes. | |
# But, we only iterate through the DataLoader on process 0. | |
main_iterator = super().__iter__() | |
elif self.state.process_index == 0: | |
main_iterator = super().__iter__() | |
stop_iteration = False | |
self._stop_iteration = False | |
first_batch = None | |
next_batch, next_batch_info = self._fetch_batches(main_iterator) | |
batch_index = 0 | |
while not stop_iteration: | |
batch, batch_info = next_batch, next_batch_info | |
if self.state.process_index != 0: | |
# Initialize tensors on other processes than process 0. | |
batch = initialize_tensors(batch_info[0]) | |
batch = send_to_device(batch, self.state.device) | |
# Broadcast the batch before splitting it. | |
batch = broadcast(batch, from_process=0) | |
if not self._drop_last and first_batch is None: | |
# We keep at least num processes elements of the first batch to be able to complete the last batch | |
first_batch = slice_tensors(batch, slice(0, self.state.num_processes)) | |
if batch is None: | |
raise ValueError( | |
f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration." | |
) | |
observed_batch_size = find_batch_size(batch) | |
batch_size = observed_batch_size // self.state.num_processes | |
stop_iteration = self._stop_iteration | |
if not stop_iteration: | |
# We may still be at the end of the dataloader without knowing it yet: if there is nothing left in | |
# the dataloader since the number of batches is a round multiple of the number of processes. | |
next_batch, next_batch_info = self._fetch_batches(main_iterator) | |
# next_batch_info[0] is None when there are no more batches, otherwise we still need to process them. | |
if self._stop_iteration and next_batch_info[0] is None: | |
stop_iteration = True | |
if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0: | |
# If the last batch is not complete, let's add the first batch to it. | |
batch = concatenate([batch, first_batch], dim=0) | |
# Batch size computation above is wrong, it's off by 1 so we fix it. | |
batch_size += 1 | |
data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size) | |
batch = slice_tensors(batch, data_slice) | |
if stop_iteration: | |
self.end_of_dataloader = True | |
self.remainder = observed_batch_size | |
if batch_index >= self.skip_batches: | |
yield batch | |
batch_index += 1 | |
self.end() | |
def __len__(self): | |
whole_length = super().__len__() | |
if self.split_batches: | |
return whole_length | |
elif self._drop_last: | |
return whole_length // self.state.num_processes | |
else: | |
return math.ceil(whole_length / self.state.num_processes) | |
def total_batch_size(self): | |
return ( | |
self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes) | |
) | |
def total_dataset_length(self): | |
return len(self.dataset) | |
def prepare_data_loader( | |
dataloader: DataLoader, | |
device: Optional[torch.device] = None, | |
num_processes: Optional[int] = None, | |
process_index: Optional[int] = None, | |
split_batches: bool = False, | |
put_on_device: bool = False, | |
rng_types: Optional[List[Union[str, RNGType]]] = None, | |
dispatch_batches: Optional[bool] = None, | |
even_batches: bool = True, | |
) -> DataLoader: | |
""" | |
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only. | |
Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration | |
at the first batch that would be too small / not present on all processes or loop with indices from the beginning. | |
Args: | |
dataloader (`torch.utils.data.dataloader.DataLoader`): | |
The data loader to split across several devices. | |
device (`torch.device`): | |
The target device for the returned `DataLoader`. | |
num_processes (`int`, *optional*): | |
The number of processes running concurrently. Will default to the value given by | |
[`~state.AcceleratorState`]. | |
process_index (`int`, *optional*): | |
The index of the current process. Will default to the value given by [`~state.AcceleratorState`]. | |
split_batches (`bool`, *optional*, defaults to `False`): | |
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or | |
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of | |
`num_processes` batches at each iteration). | |
Another way to see this is that the observed batch size will be the same as the initial `dataloader` if | |
this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` | |
otherwise. | |
Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of | |
`batch_size`. | |
put_on_device (`bool`, *optional*, defaults to `False`): | |
Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or | |
dictionaries of tensors). | |
rng_types (list of `str` or [`~utils.RNGType`]): | |
The list of random number generators to synchronize at the beginning of each iteration. Should be one or | |
several of: | |
- `"torch"`: the base torch random number generator | |
- `"cuda"`: the CUDA random number generator (GPU only) | |
- `"xla"`: the XLA random number generator (TPU only) | |
- `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your | |
dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. | |
dispatch_batches (`bool`, *optional*): | |
If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches | |
are split and broadcast to each process. Will default to `True` when the underlying dataset is an | |
`IterableDataset`, `False` otherwise. | |
even_batches (`bool`, *optional*, defaults to `True`): | |
If set to `True`, in cases where the total batch size across all processes does not exactly divide the | |
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among | |
all workers. | |
Returns: | |
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches | |
<Tip warning={true}> | |
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` | |
equal to `False` | |
</Tip> | |
""" | |
if dispatch_batches is None: | |
if not put_on_device: | |
dispatch_batches = False | |
else: | |
dispatch_batches = isinstance(dataloader.dataset, IterableDataset) | |
if dispatch_batches and not put_on_device: | |
raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.") | |
# Grab defaults from AcceleratorState | |
state = AcceleratorState() | |
if num_processes is None: | |
num_processes = state.num_processes | |
if process_index is None: | |
process_index = state.process_index | |
# Sanity check | |
if split_batches and dataloader.batch_size > 1 and dataloader.batch_size % num_processes != 0: | |
raise ValueError( | |
f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) " | |
f"needs to be a round multiple of the number of processes ({num_processes})." | |
) | |
new_dataset = dataloader.dataset | |
# Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it | |
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None | |
sampler_is_batch_sampler = False | |
synchronized_generator = None | |
# No change if no multiprocess | |
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches: | |
if isinstance(new_dataset, IterableDataset): | |
if getattr(dataloader.dataset, "generator", None) is not None: | |
synchronized_generator = dataloader.dataset.generator | |
new_dataset = IterableDatasetShard( | |
new_dataset, | |
batch_size=dataloader.batch_size, | |
drop_last=dataloader.drop_last, | |
num_processes=num_processes, | |
process_index=process_index, | |
split_batches=split_batches, | |
) | |
else: | |
# New batch sampler for the current process. | |
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) | |
if sampler_is_batch_sampler: | |
sampler = dataloader.sampler.sampler | |
else: | |
sampler = dataloader.batch_sampler.sampler | |
if hasattr(sampler, "generator"): | |
if sampler.generator is None: | |
sampler.generator = torch.Generator() | |
synchronized_generator = sampler.generator | |
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler | |
new_batch_sampler = BatchSamplerShard( | |
batch_sampler, | |
num_processes=num_processes, | |
process_index=process_index, | |
split_batches=split_batches, | |
even_batches=even_batches, | |
) | |
# We ignore all of those since they are all dealt with by our new_batch_sampler | |
ignore_kwargs = [ | |
"batch_size", | |
"shuffle", | |
"sampler", | |
"batch_sampler", | |
"drop_last", | |
] | |
if rng_types is not None and synchronized_generator is None and "generator" in rng_types: | |
rng_types.remove("generator") | |
kwargs = { | |
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) | |
for k in _PYTORCH_DATALOADER_KWARGS | |
if k not in ignore_kwargs | |
} | |
# Need to provide batch_size as batch_sampler is None for Iterable dataset | |
if new_batch_sampler is None: | |
kwargs["drop_last"] = dataloader.drop_last | |
kwargs["batch_size"] = ( | |
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size | |
) | |
if dispatch_batches: | |
kwargs.pop("generator") | |
dataloader = DataLoaderDispatcher( | |
new_dataset, | |
split_batches=split_batches, | |
batch_sampler=new_batch_sampler, | |
_drop_last=dataloader.drop_last, | |
**kwargs, | |
) | |
elif sampler_is_batch_sampler: | |
dataloader = DataLoaderShard( | |
new_dataset, | |
device=device if put_on_device and state.distributed_type != DistributedType.TPU else None, | |
sampler=new_batch_sampler, | |
batch_size=dataloader.batch_size, | |
rng_types=rng_types, | |
synchronized_generator=synchronized_generator, | |
**kwargs, | |
) | |
else: | |
dataloader = DataLoaderShard( | |
new_dataset, | |
device=device if put_on_device and state.distributed_type != DistributedType.TPU else None, | |
batch_sampler=new_batch_sampler, | |
rng_types=rng_types, | |
synchronized_generator=synchronized_generator, | |
**kwargs, | |
) | |
if state.distributed_type == DistributedType.TPU: | |
return MpDeviceLoaderWrapper(dataloader, device) | |
return dataloader | |
class SkipBatchSampler(BatchSampler): | |
""" | |
A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`. | |
""" | |
def __init__(self, batch_sampler, skip_batches=0): | |
self.batch_sampler = batch_sampler | |
self.skip_batches = skip_batches | |
def __iter__(self): | |
for index, samples in enumerate(self.batch_sampler): | |
if index >= self.skip_batches: | |
yield samples | |
def total_length(self): | |
return len(self.batch_sampler) | |
def __len__(self): | |
return len(self.batch_sampler) - self.skip_batches | |
class SkipDataLoader(DataLoader): | |
""" | |
Subclass of a PyTorch `DataLoader` that will skip the first batches. | |
Args: | |
dataset (`torch.utils.data.dataset.Dataset`): | |
The dataset to use to build this datalaoder. | |
skip_batches (`int`, *optional*, defaults to 0): | |
The number of batches to skip at the beginning. | |
kwargs: | |
All other keyword arguments to pass to the regular `DataLoader` initialization. | |
""" | |
def __init__(self, dataset, skip_batches=0, **kwargs): | |
super().__init__(dataset, **kwargs) | |
self.skip_batches = skip_batches | |
def __iter__(self): | |
for index, batch in enumerate(super().__iter__()): | |
if index >= self.skip_batches: | |
yield batch | |
def skip_first_batches(dataloader, num_batches=0): | |
""" | |
Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`. | |
""" | |
dataset = dataloader.dataset | |
sampler_is_batch_sampler = False | |
if isinstance(dataset, IterableDataset): | |
new_batch_sampler = None | |
else: | |
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) | |
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler | |
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches) | |
# We ignore all of those since they are all dealt with by our new_batch_sampler | |
ignore_kwargs = [ | |
"batch_size", | |
"shuffle", | |
"sampler", | |
"batch_sampler", | |
"drop_last", | |
] | |
kwargs = { | |
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) | |
for k in _PYTORCH_DATALOADER_KWARGS | |
if k not in ignore_kwargs | |
} | |
# Need to provide batch_size as batch_sampler is None for Iterable dataset | |
if new_batch_sampler is None: | |
kwargs["drop_last"] = dataloader.drop_last | |
kwargs["batch_size"] = dataloader.batch_size | |
if isinstance(dataloader, DataLoaderDispatcher): | |
if new_batch_sampler is None: | |
# Need to manually skip batches in the dataloader | |
kwargs["skip_batches"] = num_batches | |
dataloader = DataLoaderDispatcher( | |
dataset, | |
split_batches=dataloader.split_batches, | |
batch_sampler=new_batch_sampler, | |
_drop_last=dataloader._drop_last, | |
**kwargs, | |
) | |
elif isinstance(dataloader, DataLoaderShard): | |
if new_batch_sampler is None: | |
# Need to manually skip batches in the dataloader | |
kwargs["skip_batches"] = num_batches | |
elif sampler_is_batch_sampler: | |
kwargs["sampler"] = new_batch_sampler | |
kwargs["batch_size"] = dataloader.batch_size | |
else: | |
kwargs["batch_sampler"] = new_batch_sampler | |
dataloader = DataLoaderShard( | |
dataset, | |
device=dataloader.device, | |
rng_types=dataloader.rng_types, | |
synchronized_generator=dataloader.synchronized_generator, | |
**kwargs, | |
) | |
else: | |
if new_batch_sampler is None: | |
# Need to manually skip batches in the dataloader | |
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs) | |
else: | |
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs) | |
return dataloader | |