Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import functools | |
from typing import Dict, List, Mapping, Optional, Union | |
import torch | |
import torch.nn as nn | |
from .state import PartialState | |
from .utils import ( | |
PrefixedDataset, | |
find_device, | |
named_module_tensors, | |
send_to_device, | |
set_module_tensor_to_device, | |
) | |
class ModelHook: | |
""" | |
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference | |
with PyTorch existing hooks is that they get passed along the kwargs. | |
Class attribute: | |
- **no_grad** (`bool`, *optional*, defaults to `False`) -- Whether or not to execute the actual forward pass under | |
the `torch.no_grad()` context manager. | |
""" | |
no_grad = False | |
def init_hook(self, module): | |
""" | |
To be executed when the hook is attached to the module. | |
Args: | |
module (`torch.nn.Module`): The module attached to this hook. | |
""" | |
return module | |
def pre_forward(self, module, *args, **kwargs): | |
""" | |
To be executed just before the forward method of the model. | |
Args: | |
module (`torch.nn.Module`): The module whose forward pass will be executed just after this event. | |
args (`Tuple[Any]`): The positional arguments passed to the module. | |
kwargs (`Dict[Str, Any]`): The keyword arguments passed to the module. | |
Returns: | |
`Tuple[Tuple[Any], Dict[Str, Any]]`: A tuple with the treated `args` and `kwargs`. | |
""" | |
return args, kwargs | |
def post_forward(self, module, output): | |
""" | |
To be executed just after the forward method of the model. | |
Args: | |
module (`torch.nn.Module`): The module whose forward pass been executed just before this event. | |
output (`Any`): The output of the module. | |
Returns: | |
`Any`: The processed `output`. | |
""" | |
return output | |
def detach_hook(self, module): | |
""" | |
To be executed when the hook is detached from a module. | |
Args: | |
module (`torch.nn.Module`): The module detached from this hook. | |
""" | |
return module | |
class SequentialHook(ModelHook): | |
""" | |
A hook that can contain several hooks and iterates through them at each event. | |
""" | |
def __init__(self, *hooks): | |
self.hooks = hooks | |
def init_hook(self, module): | |
for hook in self.hooks: | |
module = hook.init_hook(module) | |
return module | |
def pre_forward(self, module, *args, **kwargs): | |
for hook in self.hooks: | |
args, kwargs = hook.pre_forward(module, *args, **kwargs) | |
return args, kwargs | |
def post_forward(self, module, output): | |
for hook in self.hooks: | |
output = hook.post_forward(module, output) | |
return output | |
def detach_hook(self, module): | |
for hook in self.hooks: | |
module = hook.detach_hook(module) | |
return module | |
def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool = False): | |
""" | |
Adds a hook to a given module. This will rewrite the `forward` method of the module to include the hook, to remove | |
this behavior and restore the original `forward` method, use `remove_hook_from_module`. | |
<Tip warning={true}> | |
If the module already contains a hook, this will replace it with the new hook passed by default. To chain two hooks | |
together, pass `append=True`, so it chains the current and new hook into an instance of the `SequentialHook` class. | |
</Tip> | |
Args: | |
module (`torch.nn.Module`): | |
The module to attach a hook to. | |
hook (`ModelHook`): | |
The hook to attach. | |
append (`bool`, *optional*, defaults to `False`): | |
Whether the hook should be chained with an existing one (if module already contains a hook) or not. | |
Returns: | |
`torch.nn.Module`: The same module, with the hook attached (the module is modified in place, so the result can | |
be discarded). | |
""" | |
if append and (getattr(module, "_hf_hook", None) is not None): | |
old_hook = module._hf_hook | |
remove_hook_from_module(module) | |
hook = SequentialHook(old_hook, hook) | |
if hasattr(module, "_hf_hook") and hasattr(module, "_old_forward"): | |
# If we already put some hook on this module, we replace it with the new one. | |
old_forward = module._old_forward | |
else: | |
old_forward = module.forward | |
module._old_forward = old_forward | |
module = hook.init_hook(module) | |
module._hf_hook = hook | |
def new_forward(*args, **kwargs): | |
args, kwargs = module._hf_hook.pre_forward(module, *args, **kwargs) | |
if module._hf_hook.no_grad: | |
with torch.no_grad(): | |
output = old_forward(*args, **kwargs) | |
else: | |
output = old_forward(*args, **kwargs) | |
return module._hf_hook.post_forward(module, output) | |
module.forward = new_forward | |
return module | |
def remove_hook_from_module(module: nn.Module, recurse=False): | |
""" | |
Removes any hook attached to a module via `add_hook_to_module`. | |
Args: | |
module (`torch.nn.Module`): The module to attach a hook to. | |
recurse (`bool`, **optional**): Whether to remove the hooks recursively | |
Returns: | |
`torch.nn.Module`: The same module, with the hook detached (the module is modified in place, so the result can | |
be discarded). | |
""" | |
if hasattr(module, "_hf_hook"): | |
module._hf_hook.detach_hook(module) | |
delattr(module, "_hf_hook") | |
if hasattr(module, "_old_forward"): | |
module.forward = module._old_forward | |
delattr(module, "_old_forward") | |
if recurse: | |
for child in module.children(): | |
remove_hook_from_module(child, recurse) | |
return module | |
class AlignDevicesHook(ModelHook): | |
""" | |
A generic `ModelHook` that ensures inputs and model weights are on the same device for the forward pass of the | |
associated module, potentially offloading the weights after the forward pass. | |
Args: | |
execution_device (`torch.device`, *optional*): | |
The device on which inputs and model weights should be placed before the forward pass. | |
offload (`bool`, *optional*, defaults to `False`): | |
Whether or not the weights should be offloaded after the forward pass. | |
io_same_device (`bool`, *optional*, defaults to `False`): | |
Whether or not the output should be placed on the same device as the input was. | |
weights_map (`Mapping[str, torch.Tensor]`, *optional*): | |
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values. | |
offload_buffers (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the associated module's buffers when offloading. | |
place_submodules (`bool`, *optional*, defaults to `False`): | |
Whether to place the submodules on `execution_device` during the `init_hook` event. | |
""" | |
def __init__( | |
self, | |
execution_device: Optional[Union[int, str, torch.device]] = None, | |
offload: bool = False, | |
io_same_device: bool = False, | |
weights_map: Optional[Mapping] = None, | |
offload_buffers: bool = False, | |
place_submodules: bool = False, | |
skip_keys: Optional[Union[str, List[str]]] = None, | |
): | |
self.execution_device = execution_device | |
self.offload = offload | |
self.io_same_device = io_same_device | |
self.weights_map = weights_map | |
self.offload_buffers = offload_buffers | |
self.place_submodules = place_submodules | |
self.skip_keys = skip_keys | |
# Will contain the input device when `io_same_device=True`. | |
self.input_device = None | |
self.param_original_devices = {} | |
self.buffer_original_devices = {} | |
def __repr__(self): | |
return ( | |
f"AlignDeviceHook(execution_device={self.execution_device}, offload={self.offload}, " | |
f"io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, " | |
f"place_submodules={self.place_submodules}, skip_keys={repr(self.skip_keys)})" | |
) | |
def init_hook(self, module): | |
if not self.offload and self.execution_device is not None: | |
for name, _ in named_module_tensors(module, recurse=self.place_submodules): | |
set_module_tensor_to_device(module, name, self.execution_device) | |
elif self.offload: | |
self.original_devices = { | |
name: param.device for name, param in named_module_tensors(module, recurse=self.place_submodules) | |
} | |
if self.weights_map is None: | |
self.weights_map = { | |
name: param.to("cpu") | |
for name, param in named_module_tensors( | |
module, include_buffers=self.offload_buffers, recurse=self.place_submodules | |
) | |
} | |
for name, _ in named_module_tensors( | |
module, include_buffers=self.offload_buffers, recurse=self.place_submodules | |
): | |
set_module_tensor_to_device(module, name, "meta") | |
if not self.offload_buffers and self.execution_device is not None: | |
for name, _ in module.named_buffers(recurse=self.place_submodules): | |
set_module_tensor_to_device(module, name, self.execution_device) | |
return module | |
def pre_forward(self, module, *args, **kwargs): | |
if self.io_same_device: | |
self.input_device = find_device([args, kwargs]) | |
if self.offload: | |
for name, _ in named_module_tensors( | |
module, include_buffers=self.offload_buffers, recurse=self.place_submodules | |
): | |
fp16_statistics = None | |
if "weight" in name and name.replace("weight", "SCB") in self.weights_map.keys(): | |
if self.weights_map[name].dtype == torch.int8: | |
fp16_statistics = self.weights_map[name.replace("weight", "SCB")] | |
set_module_tensor_to_device( | |
module, name, self.execution_device, value=self.weights_map[name], fp16_statistics=fp16_statistics | |
) | |
return send_to_device(args, self.execution_device), send_to_device( | |
kwargs, self.execution_device, skip_keys=self.skip_keys | |
) | |
def post_forward(self, module, output): | |
if self.offload: | |
for name, _ in named_module_tensors( | |
module, include_buffers=self.offload_buffers, recurse=self.place_submodules | |
): | |
set_module_tensor_to_device(module, name, "meta") | |
if type(module).__name__ == "Linear8bitLt": | |
module.state.SCB = None | |
module.state.CxB = None | |
if self.io_same_device and self.input_device is not None: | |
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys) | |
return output | |
def detach_hook(self, module): | |
if self.offload: | |
for name, device in self.original_devices.items(): | |
if device != torch.device("meta"): | |
set_module_tensor_to_device(module, name, device, value=self.weights_map.get(name, None)) | |
def attach_execution_device_hook( | |
module: torch.nn.Module, | |
execution_device: Union[int, str, torch.device], | |
skip_keys: Optional[Union[str, List[str]]] = None, | |
preload_module_classes: Optional[List[str]] = None, | |
): | |
""" | |
Recursively attaches `AlignDevicesHook` to all submodules of a given model to make sure they have the right | |
execution device | |
Args: | |
module (`torch.nn.Module`): | |
The module where we want to attach the hooks. | |
execution_device (`int`, `str` or `torch.device`): | |
The device on which inputs and model weights should be placed before the forward pass. | |
skip_keys (`str` or `List[str]`, *optional*): | |
A list of keys to ignore when moving inputs or outputs between devices. | |
preload_module_classes (`List[str]`, *optional*): | |
A list of classes whose instances should load all their weights (even in the submodules) at the beginning | |
of the forward. This should only be used for classes that have submodules which are registered but not | |
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, | |
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. | |
""" | |
if not hasattr(module, "_hf_hook") and len(module.state_dict()) > 0: | |
add_hook_to_module(module, AlignDevicesHook(execution_device, skip_keys=skip_keys)) | |
# Break the recursion if we get to a preload module. | |
if preload_module_classes is not None and module.__class__.__name__ in preload_module_classes: | |
return | |
for child in module.children(): | |
attach_execution_device_hook(child, execution_device) | |
def attach_align_device_hook( | |
module: torch.nn.Module, | |
execution_device: Optional[torch.device] = None, | |
offload: bool = False, | |
weights_map: Optional[Mapping] = None, | |
offload_buffers: bool = False, | |
module_name: str = "", | |
skip_keys: Optional[Union[str, List[str]]] = None, | |
preload_module_classes: Optional[List[str]] = None, | |
): | |
""" | |
Recursively attaches `AlignDevicesHook` to all submodules of a given model that have direct parameters and/or | |
buffers. | |
Args: | |
module (`torch.nn.Module`): | |
The module where we want to attach the hooks. | |
execution_device (`torch.device`, *optional*): | |
The device on which inputs and model weights should be placed before the forward pass. | |
offload (`bool`, *optional*, defaults to `False`): | |
Whether or not the weights should be offloaded after the forward pass. | |
weights_map (`Mapping[str, torch.Tensor]`, *optional*): | |
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values. | |
offload_buffers (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the associated module's buffers when offloading. | |
module_name (`str`, *optional*, defaults to `""`): | |
The name of the module. | |
skip_keys (`str` or `List[str]`, *optional*): | |
A list of keys to ignore when moving inputs or outputs between devices. | |
preload_module_classes (`List[str]`, *optional*): | |
A list of classes whose instances should load all their weights (even in the submodules) at the beginning | |
of the forward. This should only be used for classes that have submodules which are registered but not | |
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, | |
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. | |
""" | |
# Attach the hook on this module if it has any direct tensor. | |
directs = named_module_tensors(module) | |
full_offload = ( | |
offload and preload_module_classes is not None and module.__class__.__name__ in preload_module_classes | |
) | |
if len(list(directs)) > 0 or full_offload: | |
if weights_map is not None: | |
prefix = f"{module_name}." if len(module_name) > 0 else "" | |
prefixed_weights_map = PrefixedDataset(weights_map, prefix) | |
else: | |
prefixed_weights_map = None | |
hook = AlignDevicesHook( | |
execution_device=execution_device, | |
offload=offload, | |
weights_map=prefixed_weights_map, | |
offload_buffers=offload_buffers, | |
place_submodules=full_offload, | |
skip_keys=skip_keys, | |
) | |
add_hook_to_module(module, hook, append=True) | |
# We stop the recursion in case we hit the full offload. | |
if full_offload: | |
return | |
# Recurse on all children of the module. | |
for child_name, child in module.named_children(): | |
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name | |
attach_align_device_hook( | |
child, | |
execution_device=execution_device, | |
offload=offload, | |
weights_map=weights_map, | |
offload_buffers=offload_buffers, | |
module_name=child_name, | |
preload_module_classes=preload_module_classes, | |
skip_keys=skip_keys, | |
) | |
def remove_hook_from_submodules(module: nn.Module): | |
""" | |
Recursively removes all hooks attached on the submodules of a given model. | |
Args: | |
module (`torch.nn.Module`): The module on which to remove all hooks. | |
""" | |
remove_hook_from_module(module) | |
for child in module.children(): | |
remove_hook_from_submodules(child) | |
def attach_align_device_hook_on_blocks( | |
module: nn.Module, | |
execution_device: Optional[Union[torch.device, Dict[str, torch.device]]] = None, | |
offload: Union[bool, Dict[str, bool]] = False, | |
weights_map: Mapping = None, | |
offload_buffers: bool = False, | |
module_name: str = "", | |
skip_keys: Optional[Union[str, List[str]]] = None, | |
preload_module_classes: Optional[List[str]] = None, | |
): | |
""" | |
Attaches `AlignDevicesHook` to all blocks of a given model as needed. | |
Args: | |
module (`torch.nn.Module`): | |
The module where we want to attach the hooks. | |
execution_device (`torch.device` or `Dict[str, torch.device]`, *optional*): | |
The device on which inputs and model weights should be placed before the forward pass. It can be one device | |
for the whole module, or a dictionary mapping module name to device. | |
offload (`bool`, *optional*, defaults to `False`): | |
Whether or not the weights should be offloaded after the forward pass. It can be one boolean for the whole | |
module, or a dictionary mapping module name to boolean. | |
weights_map (`Mapping[str, torch.Tensor]`, *optional*): | |
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values. | |
offload_buffers (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the associated module's buffers when offloading. | |
module_name (`str`, *optional*, defaults to `""`): | |
The name of the module. | |
skip_keys (`str` or `List[str]`, *optional*): | |
A list of keys to ignore when moving inputs or outputs between devices. | |
preload_module_classes (`List[str]`, *optional*): | |
A list of classes whose instances should load all their weights (even in the submodules) at the beginning | |
of the forward. This should only be used for classes that have submodules which are registered but not | |
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, | |
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. | |
""" | |
# If one device and one offload, we've got one hook. | |
if not isinstance(execution_device, Mapping) and not isinstance(offload, dict): | |
if not offload: | |
hook = AlignDevicesHook( | |
execution_device=execution_device, io_same_device=True, skip_keys=skip_keys, place_submodules=True | |
) | |
add_hook_to_module(module, hook) | |
else: | |
attach_align_device_hook( | |
module, | |
execution_device=execution_device, | |
offload=True, | |
weights_map=weights_map, | |
offload_buffers=offload_buffers, | |
module_name=module_name, | |
skip_keys=skip_keys, | |
) | |
return | |
if not isinstance(execution_device, Mapping): | |
execution_device = {key: execution_device for key in offload.keys()} | |
if not isinstance(offload, Mapping): | |
offload = {key: offload for key in execution_device.keys()} | |
if module_name in execution_device and module_name in offload and not offload[module_name]: | |
hook = AlignDevicesHook( | |
execution_device=execution_device[module_name], | |
offload_buffers=offload_buffers, | |
io_same_device=(module_name == ""), | |
place_submodules=True, | |
skip_keys=skip_keys, | |
) | |
add_hook_to_module(module, hook) | |
attach_execution_device_hook(module, execution_device[module_name]) | |
elif module_name in execution_device and module_name in offload: | |
attach_align_device_hook( | |
module, | |
execution_device=execution_device[module_name], | |
offload=True, | |
weights_map=weights_map, | |
offload_buffers=offload_buffers, | |
module_name=module_name, | |
skip_keys=skip_keys, | |
preload_module_classes=preload_module_classes, | |
) | |
if not hasattr(module, "_hf_hook"): | |
hook = AlignDevicesHook( | |
execution_device=execution_device[module_name], io_same_device=(module_name == ""), skip_keys=skip_keys | |
) | |
add_hook_to_module(module, hook) | |
attach_execution_device_hook( | |
module, | |
execution_device[module_name], | |
preload_module_classes=preload_module_classes, | |
skip_keys=skip_keys, | |
) | |
elif module_name == "": | |
hook = AlignDevicesHook(execution_device=execution_device.get(""), io_same_device=True, skip_keys=skip_keys) | |
add_hook_to_module(module, hook) | |
for child_name, child in module.named_children(): | |
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name | |
attach_align_device_hook_on_blocks( | |
child, | |
execution_device=execution_device, | |
offload=offload, | |
weights_map=weights_map, | |
offload_buffers=offload_buffers, | |
module_name=child_name, | |
preload_module_classes=preload_module_classes, | |
skip_keys=skip_keys, | |
) | |
class CpuOffload(ModelHook): | |
""" | |
Offloads a model on the CPU until its forward pass is called. The model will not be offloaded back to the CPU after | |
the forward, the user needs to call the `init_hook` method again for this. | |
Args: | |
execution_device(`str`, `int` or `torch.device`, *optional*): | |
The device on which the model should be executed. Will default to the MPS device if it's available, then | |
GPU 0 if there is a GPU, and finally to the CPU. | |
prev_module_hook (`UserCpuOffloadHook`, *optional*): | |
The hook sent back by [`cpu_offload_with_hook`] for a previous model in the pipeline you are running. If | |
passed, its offload method will be called just before the forward of the model to which this hook is | |
attached. | |
""" | |
def __init__( | |
self, | |
execution_device: Optional[Union[str, int, torch.device]] = None, | |
prev_module_hook: Optional["UserCpuOffloadHook"] = None, | |
): | |
self.prev_module_hook = prev_module_hook | |
self.execution_device = execution_device if execution_device is not None else PartialState().default_device | |
def init_hook(self, module): | |
return module.to("cpu") | |
def pre_forward(self, module, *args, **kwargs): | |
if self.prev_module_hook is not None: | |
self.prev_module_hook.offload() | |
module.to(self.execution_device) | |
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device) | |
class UserCpuOffloadHook: | |
""" | |
A simple hook grouping a model and a `ModelHook`, which provides easy APIs for to call the init method of the hook | |
or remove it entirely. | |
""" | |
def __init__(self, model, hook): | |
self.model = model | |
self.hook = hook | |
def offload(self): | |
self.hook.init_hook(self.model) | |
def remove(self): | |
remove_hook_from_module(self.model) | |